All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.calc.regression.svm.SVMParameterHelper Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
package com.actelion.research.calc.regression.svm;

import org.machinelearning.svm.libsvm.svm_parameter;


/**
 * SVMParameterHelper
 * 

Modest v. Korff

*

* Created by korffmo1 on 27.11.18. */ public class SVMParameterHelper { public static final String SVM_TYPE_C = "C_SVC"; public static final String SVM_TYPE_NU = "NU_SVC"; public static final String SVM_TYPE_ONE_CLASS = "OneClass"; public static final String SVM_TYPE_EPSILON_SVR = "EpsSVR"; public static final String SVM_TYPE_NU_SVR = "NU_SVR"; public static final String KERNEL_TYPE_LINEAR = "Linear"; public static final String KERNEL_TYPE_POLY = "Poly"; public static final String KERNEL_TYPE_RBF = "RBF"; public static final String KERNEL_TYPE_SIGMOID = "Sigmoid"; public static final String KERNEL_TYPE_PRECOMPUTED = "Precomputed"; public static final int DEGREE_ANALYTICALLY_PARAMETER_CALC = -1; public static svm_parameter standard() { svm_parameter param = new svm_parameter(); // default values param.svm_type = svm_parameter.C_SVC; param.kernel_type = svm_parameter.RBF; param.degree = 3; param.gamma = 0; // 1/num_features param.coef0 = 0; param.nu = 0.5; param.cache_size = 100; param.C = 1; param.eps = 1e-3; param.p = 0.1; param.shrinking = 1; param.probability = 0; param.nr_weight = 0; param.weight_label = new int[0]; param.weight = new double[0]; return param; } /** * Regression epsilon-SVR * Degree set to trigger analytical parameter determination in createModel(....) * @return */ public static svm_parameter regressionEpsilonSVR() { svm_parameter param = new svm_parameter(); // default values param.svm_type = svm_parameter.EPSILON_SVR; param.kernel_type = svm_parameter.RBF; param.degree = DEGREE_ANALYTICALLY_PARAMETER_CALC; param.gamma = 0; // 1/num_features param.coef0 = 0; param.nu = 0.5; param.cache_size = 100; param.C = 130; param.eps = 5; param.p = 0.1; param.shrinking = 1; param.probability = 0; param.nr_weight = 0; param.weight_label = new int[0]; param.weight = new double[0]; return param; } // Until 01.11.2019 // public static svm_parameter regressionEpsilonSVR() { // // svm_parameter param = new svm_parameter(); // // default values // param.svm_type = svm_parameter.EPSILON_SVR; // param.kernel_type = svm_parameter.RBF; // param.degree = 3; // param.gamma = 0; // 1/num_features // param.coef0 = 0; // param.nu = 0.5; // param.cache_size = 100; // param.C = 1; // param.eps = 1e-3; // param.p = 0.1; // param.shrinking = 1; // param.probability = 0; // param.nr_weight = 0; // param.weight_label = new int[0]; // param.weight = new double[0]; // // return param; // } /** * Regression nu-SVR * * @param nu, default was 0.5 * @return */ public static svm_parameter regressionNuSVR(double nu) { svm_parameter param = new svm_parameter(); // default values param.svm_type = svm_parameter.NU_SVR; param.kernel_type = svm_parameter.RBF; param.degree = 3; param.gamma = 1; // 1/num_features param.coef0 = 0; param.nu = nu; param.cache_size = 100; param.C = 1; param.eps = 1e-3; param.p = 0.1; param.shrinking = 1; param.probability = 0; param.nr_weight = 0; param.weight_label = new int[0]; param.weight = new double[0]; return param; } public static String getSVMType(int svmType) { String strType = ""; switch (svmType){ case svm_parameter.C_SVC: strType = SVM_TYPE_C; break; case svm_parameter.NU_SVC: strType = SVM_TYPE_NU; break; case svm_parameter.ONE_CLASS: strType = SVM_TYPE_ONE_CLASS; break; case svm_parameter.NU_SVR: strType = SVM_TYPE_NU_SVR; break; case svm_parameter.EPSILON_SVR: strType = SVM_TYPE_EPSILON_SVR; break; } return strType; } public static int getSVMType(String strSVMType) { int svmType = -1; if(SVM_TYPE_C.equals(strSVMType)) { svmType = svm_parameter.C_SVC; }else if(SVM_TYPE_NU.equals(strSVMType)) { svmType = svm_parameter.NU_SVC; }else if(SVM_TYPE_ONE_CLASS.equals(strSVMType)) { svmType = svm_parameter.ONE_CLASS; }else if(SVM_TYPE_NU_SVR.equals(strSVMType)) { svmType = svm_parameter.NU_SVR; }else if(SVM_TYPE_EPSILON_SVR.equals(strSVMType)) { svmType = svm_parameter.EPSILON_SVR; } else { throw new RuntimeException("Unknown svm type " + strSVMType + "."); } return svmType; } public static String getKernelType(int svmType) { String strType = ""; switch (svmType){ case svm_parameter.LINEAR: strType = KERNEL_TYPE_LINEAR; break; case svm_parameter.POLY: strType = KERNEL_TYPE_POLY; break; case svm_parameter.RBF: strType = KERNEL_TYPE_RBF; break; case svm_parameter.SIGMOID: strType = KERNEL_TYPE_SIGMOID; break; case svm_parameter.PRECOMPUTED: strType = KERNEL_TYPE_PRECOMPUTED; break; } return strType; } public static int getKernelType(String strKernelType) { int svmType = -1; if(KERNEL_TYPE_LINEAR.equals(strKernelType)) { svmType = svm_parameter.LINEAR; }else if(KERNEL_TYPE_POLY.equals(strKernelType)) { svmType = svm_parameter.POLY; }else if(KERNEL_TYPE_RBF.equals(strKernelType)) { svmType = svm_parameter.RBF; }else if(KERNEL_TYPE_SIGMOID.equals(strKernelType)) { svmType = svm_parameter.SIGMOID; }else if(KERNEL_TYPE_PRECOMPUTED.equals(strKernelType)) { svmType = svm_parameter.PRECOMPUTED; } else { throw new RuntimeException("Unknown kernel type " + strKernelType + "."); } return svmType; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy