com.actelion.research.calc.statistics.StatisticsOverview Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
package com.actelion.research.calc.statistics;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.util.Arrays;
import java.util.Locale;
import com.actelion.research.calc.ArrayUtilsCalc;
import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.histogram.ConstantsHistogram;
import com.actelion.research.calc.histogram.IntegerHistogram;
import com.actelion.research.calc.histogram.MatrixBasedHistogram;
import com.actelion.research.util.Formatter;
import com.actelion.research.util.datamodel.DoubleArray;
import com.actelion.research.util.datamodel.IntArray;
/**
*
* StatisticsOverview
* Some basic statistics about the given data
* 28 Jun 2010 MvK: Start implementation
*/
public class StatisticsOverview {
public static final String TAG_MEAN = "Avr";
public static final String TAG_SDV = "SDV";
public static final String TAG_MEDIAN = "Median";
public static final String TAG_PERCENTILE05 = "Percentile.05";
public static final String TAG_PERCENTILE95 = "Percentile.95";
public static final NumberFormat DF1 = new DecimalFormat("0.0", new DecimalFormatSymbols(Locale.US));
public static final NumberFormat DF3 = new DecimalFormat("0.000", new DecimalFormatSymbols(Locale.US));
public static final NumberFormat DF4 = new DecimalFormat("0.0000", new DecimalFormatSymbols(Locale.US));
private static final NumberFormat DF3Plus = new DecimalFormat("0.000##", new DecimalFormatSymbols(Locale.US));
private static final int BINS = 20;
private static final int WIDTH = 8;
private static final int DIGITS = 2;
private String name;
private double min;
private double mean;
private double max;
private double sdv;
private double percentile05;
private double leftQuartile;
private double median;
private double rightQuartile;
private double percentile95;
private Matrix histogram;
private int valsBelowHistMin;
private int valsAboveHistMax;
private int bins;
private DoubleArray data;
private boolean evaluated;
public StatisticsOverview() {
data = new DoubleArray();
bins = BINS;
evaluated = false;
}
public StatisticsOverview(DoubleArray da) {
data = da;
bins = BINS;
evaluated = false;
}
public void add(double value){
data.add(value);
evaluated = false;
}
public void add(double [] arr){
for (int i = 0; i < arr.length; i++) {
data.add(arr[i]);
}
evaluated = false;
}
public void add(int [] arr){
for (int i = 0; i < arr.length; i++) {
data.add(arr[i]);
}
evaluated = false;
}
public DoubleArray getData() {
return data;
}
public double getMean() {
return mean;
}
public double getSdv() {
return sdv;
}
public double getMedian() {
return median;
}
public ModelStatisticsOverview evaluate(){
double histMin = data.min() - data.min() * ConstantsHistogram.TINY_FACTOR;
double histMax = data.max() + data.max() * ConstantsHistogram.TINY_FACTOR;
ModelStatisticsOverview modelStatisticsOverview = new ModelStatisticsOverview();
if(Math.abs(histMin-histMax) > Matrix.TINY08) {
evaluate(histMin, histMax);
modelStatisticsOverview.min = data.min();
modelStatisticsOverview.avr = mean;
modelStatisticsOverview.max = data.max();
modelStatisticsOverview.sdv = sdv;
} else {
modelStatisticsOverview.min = 0;
modelStatisticsOverview.avr = 0;
modelStatisticsOverview.max = 0;
modelStatisticsOverview.sdv = 0;
}
return modelStatisticsOverview;
}
public void evaluate(double histMin, double histMax){
if(Math.abs(histMin-histMax) < Matrix.TINY08) {
throw new RuntimeException("Equal histogram boundaries! histMin " + histMin + " histMax" + histMax + ".");
}
calculateMedianStatistics();
double [] arr = data.get();
min = ArrayUtilsCalc.min(arr);
mean = ArrayUtilsCalc.getMean(arr);
max = ArrayUtilsCalc.max(arr);
sdv = ArrayUtilsCalc.getStandardDeviation(arr);
Matrix maBins = MatrixBasedHistogram.getHistogramBins(histMin, histMax, bins);
Matrix ma = new Matrix(true, arr);
histogram = MatrixBasedHistogram.getHistogram(ma, maBins);
for (int i = 0; i < ma.cols(); i++) {
if(ma.get(0, i)histMax)
valsAboveHistMax++;
}
evaluated = true;
}
public void evaluateIntegerBins(double histMin, double histMax){
calculateMedianStatistics();
Matrix ma = new Matrix(true, data.get());
mean = ma.getMean();
sdv = ma.getStandardDeviation();
int [][] arrBins = IntegerHistogram.getBinsEquallyDistributed(bins, (int)histMin, (int)histMax);
Matrix maBins = new Matrix(arrBins);
maBins = maBins.getTranspose();
histogram = MatrixBasedHistogram.getHistogram(ma, maBins);
for (int i = 0; i < ma.cols(); i++) {
if(ma.get(0, i)histMax)
valsAboveHistMax++;
}
evaluated = true;
}
private double calculateMedianStatistics() {
double [] arr = data.get();
Arrays.sort(arr);
percentile05 = getQuartile(arr, 0.05);
leftQuartile = getQuartile(arr, 0.25);
median = getQuartile(arr, 0.5);
rightQuartile = getQuartile(arr, 0.75);
percentile95 = getQuartile(arr, 0.95);
return median;
}
public double getPercentile05() {
return percentile05;
}
public double getPercentile95() {
return percentile95;
}
private static double getQuartile(double [] arr, double q) {
double v = 0;
if(q<0){
throw new RuntimeException("Negative values are not allowed!");
}
if(arr.length % 2==0) {
if(((int)(q * arr.length))==0){
v = arr[0];
} else {
int p1 = (int) ((q * arr.length) - 1);
int p2 = (int) (q * arr.length);
v = (arr[p1] + arr[p2]) / 2.0;
}
} else {
int p = (int)(arr.length * q);
v = arr[p];
}
return v;
}
public double getQuartile(double q) {
double [] arr = data.get();
Arrays.sort(arr);
return getQuartile(arr, q);
}
public int getNumData(){
return data.size();
}
@Override
public String toString() {
if(data.size()==0){
return "";
}
if(!evaluated)
evaluate();
StringBuilder sb = new StringBuilder();
sb.append("Name\t" + name);
sb.append("\n");
sb.append("Values\t" + data.size());
sb.append("\n");
sb.append("min\t" + min);
sb.append("\n");
sb.append("Mean\t" + DF3Plus.format(mean));
sb.append("\n");
sb.append("max\t" + max);
sb.append("\n");
sb.append("SDV\t" + DF3Plus.format(sdv));
sb.append("\n");
sb.append("Quartile 0.25\t" + DF3Plus.format(leftQuartile));
sb.append("\n");
sb.append("Median\t" + DF3Plus.format(median));
sb.append("\n");
sb.append("Quartile 0.75\t" + DF3Plus.format(rightQuartile));
sb.append("\n");
sb.append("Histogram values below hist min " + valsBelowHistMin + ", values above hist max " + valsAboveHistMax);
sb.append("\n");
sb.append(MatrixBasedHistogram.histogram2String(histogram, DIGITS, WIDTH));
Matrix histTrans = histogram.getTranspose();
DecimalFormat dfBins = Matrix.format(DIGITS);
sb.append("\n");
for (int i = 0; i < histTrans.rows(); i++) {
sb.append(Matrix.format(histTrans.get(i,0), dfBins, WIDTH));
sb.append("\t");
sb.append(Matrix.format(histTrans.get(i,1), dfBins, WIDTH));
sb.append("\t");
sb.append(Matrix.format(histTrans.get(i,2), dfBins, WIDTH));
sb.append("\n");
}
return sb.toString();
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public void setBins(int bins) {
this.bins = bins;
}
public int getValsBelowHistMin() {
return valsBelowHistMin;
}
public int getValsAboveHistMax() {
return valsAboveHistMax;
}
public Matrix getHistogram() {
return histogram;
}
public static ModelStatisticsOverview get(DoubleArray da){
StatisticsOverview statisticsOverview = new StatisticsOverview(da);
return statisticsOverview.evaluate();
}
public static ModelStatisticsOverviewMedian getMedianOverview(DoubleArray da){
StatisticsOverview statisticsOverview = new StatisticsOverview(da);
statisticsOverview.evaluate();
ModelStatisticsOverviewMedian model =
new ModelStatisticsOverviewMedian(
statisticsOverview.percentile05,
statisticsOverview.leftQuartile,
statisticsOverview.median,
statisticsOverview.rightQuartile,
statisticsOverview.percentile95);
return model;
}
public static String toString(DoubleArray da, String text1){
StringBuilder sb = new StringBuilder();
StatisticsOverview so = new StatisticsOverview(da);
so.evaluate();
sb.append(text1);
sb.append("\t");
sb.append(DF3.format(so.getMean()));
sb.append("\t");
sb.append(DF3.format(so.getSdv()));
sb.append("\t");
sb.append(DF3.format(so.getMedian()));
sb.append("\t");
sb.append(DF3.format(so.getPercentile05()));
sb.append("\t");
sb.append(DF3.format(so.getPercentile95()));
return sb.toString();
}
public static String toString(IntArray ia, String text){
StringBuilder sb = new StringBuilder();
DoubleArray da = new DoubleArray(ia);
StatisticsOverview so = new StatisticsOverview(da);
so.evaluate();
sb.append(text);
sb.append("\t");
sb.append(DF1.format(so.getMean()));
sb.append("\t");
sb.append(DF1.format(so.getSdv()));
sb.append("\t");
sb.append(DF1.format(so.getMedian()));
sb.append("\t");
sb.append(DF1.format(so.getPercentile05()));
sb.append("\t");
sb.append(DF1.format(so.getPercentile95()));
return sb.toString();
}
public static String toStringHeader(){
StringBuilder sb = new StringBuilder();
sb.append("text");
sb.append("\t");
sb.append("mean");
sb.append("\t");
sb.append("sdv");
sb.append("\t");
sb.append("median");
sb.append("\t");
sb.append("perc05");
sb.append("\t");
sb.append("perc95");
return sb.toString();
}
public static String toString(DoubleArray da, String text1, String text2){
StringBuilder sb = new StringBuilder();
StatisticsOverview so = new StatisticsOverview(da);
so.evaluate();
sb.append(text1);
sb.append("\t");
sb.append(text2);
sb.append("\t");
sb.append(DF3.format(so.getMean()));
sb.append("\t");
sb.append(DF3.format(so.getSdv()));
sb.append("\t");
sb.append(DF3.format(so.getMedian()));
sb.append("\t");
sb.append(DF3.format(so.getPercentile05()));
sb.append("\t");
sb.append(DF3.format(so.getPercentile95()));
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy