com.actelion.research.chem.RingCollection Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @author Thomas Sander
*/
package com.actelion.research.chem;
import java.util.ArrayList;
public class RingCollection {
public static final int MAX_SMALL_RING_SIZE = 7;
public static final int MAX_SMALL_RING_COUNT = 1024; // to prevent explosions with highly connected metal grids, etc.
private static final int MODE_SMALL_RINGS = 1;
private static final int MODE_LARGE_RINGS = 2;
private static final int MODE_AROMATICITY = 4;
public static final int MODE_SMALL_RINGS_ONLY = MODE_SMALL_RINGS;
public static final int MODE_SMALL_AND_LARGE_RINGS = MODE_SMALL_RINGS
| MODE_LARGE_RINGS;
public static final int MODE_SMALL_RINGS_AND_AROMATICITY = MODE_SMALL_RINGS
| MODE_AROMATICITY;
public static final int MODE_SMALL_AND_LARGE_RINGS_AND_AROMATICITY = MODE_SMALL_RINGS
| MODE_LARGE_RINGS
| MODE_AROMATICITY;
public static final int MODE_INCLUDE_TAUTOMERIC_BONDS = 8;
private static final int FEATURES_RING_SIZE = 0x0000FFFF;
private static final int FEATURES_AROMATIC = 0x00010000;
private static final int FEATURES_DELOCALIZED = 0x00020000;
private static final int FEATURES_HETERO_AROMATIC = 0x00040000;
private ExtendedMolecule mMol;
private ArrayList mRingAtomSet;
private ArrayList mRingBondSet;
private int[] mAtomRingFeatures;
private int[] mBondRingFeatures;
private int[] mHeteroPosition;
private boolean[] mIsAromatic;
private boolean[] mIsDelocalized;
private int mMaxSmallRingSize;
/**
* Generates the complete set of small rings, which don't contain metal atoms
* and have up to 7 members.
If mode includes LARGE_RINGS, then it determines
* for every atom and bond the size of the smallest ring, which they are
* a member of.
If mode includes AROMATICITY then every small ring
* is checked, whether it is aromatic.
* @param mol
* @param mode one of the public MODE_ options
*/
public RingCollection(ExtendedMolecule mol, int mode) {
this(mol, mode, MAX_SMALL_RING_SIZE);
}
/**
* Generates the complete set of small rings, which don't contain metal atoms
* and have up to 7 members.
If mode includes LARGE_RINGS, then it determines
* for every atom and bond the size of the smallest ring, which they are
* a member of.
If mode includes AROMATICITY then every small ring
* is checked, whether it is aromatic.
* @param mol
* @param mode one of the public MODE_ options
* @param maxSmallRingSize largest ring size considered a small ring
*/
public RingCollection(ExtendedMolecule mol, int mode, int maxSmallRingSize) {
mMol = mol;
mMaxSmallRingSize = maxSmallRingSize;
mRingAtomSet = new ArrayList<>();
mRingBondSet = new ArrayList<>();
mAtomRingFeatures = new int[mMol.getAtoms()];
mBondRingFeatures = new int[mMol.getBonds()];
mMol.ensureHelperArrays(ExtendedMolecule.cHelperNeighbours);
boolean[] isConfirmedChainAtom = new boolean[mMol.getAtoms()];
boolean[] isConfirmedChainBond = new boolean[mMol.getBonds()];
boolean found;
do { // detect atoms of side chains as non-ring-atoms
found = false;
for (int atom=0; atom highest) {
// if run out of atoms look for new base atom of other fragment
for (int atom=0; atom 1) && candidate == atom1) {
int ringAtom[] = new int[graphLevel[graphAtom[current]]];
int atom = graphAtom[current];
for (int j = 0; j < ringAtom.length; j++) {
ringAtom[j] = atom;
atom = graphParent[atom];
}
return ringAtom;
}
if (graphLevel[candidate] == 0 && !isConfirmedChainAtom[candidate]) {
graphAtom[++highest] = candidate;
graphLevel[candidate] = graphLevel[graphAtom[current]] + 1;
graphParent[candidate] = graphAtom[current];
}
}
current++;
}
return null;
}
/**
* An atom's ring size is the size of the smallest ring the atom is a member of.
* If the atom doesn't belong to any ring the ring size is 0. If an atom is member
* of rings larger than 7 members and if the mode parameter of the constructor
* didn't include LARGE_RINGS, then the returned ring size is also 0.
* @param atom
* @return ring size or 0
*/
public int getAtomRingSize(int atom) {
return mAtomRingFeatures[atom] & FEATURES_RING_SIZE;
}
/**
* A bond's ring size is the size of the smallest ring the bond is a member of.
* If the bond doesn't belong to any ring the ring size is 0. If a bond is member
* of rings larger than 7 members and if the mode parameter of the constructor
* didn't include LARGE_RINGS, then the returned ring size is also 0.
* @param bond
* @return ring size or 0
*/
public int getBondRingSize(int bond) {
return mBondRingFeatures[bond] & FEATURES_RING_SIZE;
}
private void addSmallRingsToSet(int closureBond, boolean[] isConfirmedChainAtom) {
int[] graphAtom = new int[mMaxSmallRingSize];
int[] connIndex = new int[mMaxSmallRingSize];
boolean[] isUsed = new boolean[mMol.getAtoms()];
int atom1 = mMol.getBondAtom(0, closureBond);
int atom2 = mMol.getBondAtom(1, closureBond);
graphAtom[0] = atom1;
graphAtom[1] = atom2;
connIndex[1] = -1;
isUsed[atom2] = true;
int current = 1;
while(current >= 1) {
connIndex[current]++;
if (connIndex[current] == mMol.getConnAtoms(graphAtom[current])) {
isUsed[graphAtom[current]] = false;
current--;
continue;
}
int candidate = mMol.getConnAtom(graphAtom[current], connIndex[current]);
if (isUsed[candidate] || isConfirmedChainAtom[candidate])
continue;
if (candidate == atom1 && current > 1) {
addRingIfNew(graphAtom, current+1);
// if we have already such many rings, we only collect the smallest ring to avoid a combinatorial explosion
if (mRingAtomSet.size() >= MAX_SMALL_RING_COUNT)
return;
continue;
}
if (current+1 < mMaxSmallRingSize) {
current++;
graphAtom[current] = candidate;
isUsed[candidate] = true;
connIndex[current] = -1;
}
}
}
private void addRingIfNew(int ringAtom[], int ringSize) {
int lowAtom = mMol.getMaxAtoms();
int lowIndex = 0;
for (int i=0; i ringAtom[i]) {
lowAtom = ringAtom[i];
lowIndex = i;
}
}
int sortedRing[] = new int[ringSize];
int leftIndex = (lowIndex > 0) ? lowIndex - 1 : ringSize - 1;
int rightIndex = (lowIndex < ringSize - 1) ? lowIndex + 1 : 0;
boolean inverse = (ringAtom[leftIndex] < ringAtom[rightIndex]);
for (int i=0; i= ringSize)
index -= ringSize;
while (index < 0)
index += ringSize;
return index;
}
/**
* Returns the position of the electron pair providing hetero atom
* or carbenium atom in case of 5-membered, respective 7-membered
* aromatic ring.
* @param ringNo
* @return position index referring to ringAtom array
*/
public int getHeteroPosition(int ringNo) {
return mHeteroPosition[ringNo];
}
public boolean isAtomMember(int ringNo, int atom) {
int[] ringAtom = mRingAtomSet.get(ringNo);
for (int i=0; iringSize) {
mAtomRingFeatures[ringAtom[i]] &= ~FEATURES_RING_SIZE;
mAtomRingFeatures[ringAtom[i]] |= ringSize;
}
}
for (int i=0; iringSize) {
mBondRingFeatures[ringBond[i]] &= ~FEATURES_RING_SIZE;
mBondRingFeatures[ringBond[i]] |= ringSize;
}
}
}
private void updateAromaticity() {
for (int ring=0; ring= 5 && ringBond.length <= 7)) {
for (int i=0; i 0) {
annelatedRing[ringMembership[bond] >>> 16]
[ringMembership[bond] & 0x7FFF] = ring;
annelatedRing[ring][i] = (ringMembership[bond] >>> 16);
}
else {
ringMembership[bond] = (ring << 16) + 0x8000 + i;
}
}
}
}
}
boolean[] aromaticityHandled = new boolean[mRingAtomSet.size()];
int ringsHandled = 0;
int lastRingsHandled = -1;
while (ringsHandled > lastRingsHandled) {
lastRingsHandled = ringsHandled;
for (int ring=0; ring 1
|| mMol.getBondType(bond) == Molecule.cBondTypeDelocalized);
}
/**
* Checks, whether this bond may contribute pi-electrons from an amide-resonance
* to an aromatic ring. According to M J Cook, A R Katritzky, P Linda, R D Tack
* J. Chem. Soc., Perkin Trans. 2, 1972, 1295-1301
* 2-pyridone and 2-pyridinethione retain most of the aromatic resonance
* energy of pyridine unless the nitrogen atom is methylated.
* @param bond
* @return
*/
public boolean qualifiesAsAmideTypeBond(int bond) {
for (int i=0; i<2; i++) {
int atom1 = mMol.getBondAtom(i, bond);
if ((mMol.getAtomicNo(atom1) == 7)
&& mMol.getConnAtoms(atom1) == 2) {
int atom2 = mMol.getBondAtom(1-i, bond);
if (mMol.getAtomicNo(atom2) == 6) {
for (int j=0; j
© 2015 - 2025 Weber Informatics LLC | Privacy Policy