com.actelion.research.chem.alignment3d.PheSAAlignmentOptimizer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
package com.actelion.research.chem.alignment3d;
import com.actelion.research.chem.Coordinates;
import com.actelion.research.chem.StereoMolecule;
import com.actelion.research.chem.alignment3d.transformation.Rotation;
import com.actelion.research.chem.alignment3d.transformation.TransformationSequence;
import com.actelion.research.chem.conf.Conformer;
import com.actelion.research.chem.phesa.MolecularVolume;
import com.actelion.research.chem.phesa.PheSAAlignment;
import com.actelion.research.chem.phesa.PheSAMolecule;
import com.actelion.research.chem.phesa.ShapeVolume;
import com.actelion.research.chem.phesa.pharmacophore.PPTriangle;
import com.actelion.research.chem.phesa.pharmacophore.PPTriangleCreator;
import com.actelion.research.chem.phesa.pharmacophore.PPTriangleMatcher;
import com.actelion.research.chem.phesa.pharmacophore.PharmacophoreCalculator;
import com.actelion.research.chem.phesa.pharmacophore.pp.PPGaussian;
import java.util.*;
import java.util.stream.Collectors;
public class PheSAAlignmentOptimizer {
public static int TRIANGLE_OPTIMIZATIONS = 50;
public static int PMI_OPTIMIZATIONS = 10;
private static double EXIT_VECTOR_WEIGHT = 10.0;
private static final int BEST_RESULT_SIZE = 20;
public enum SimilarityMode {REFTVERSKY,TVERSKY, TANIMOTO
}
private PheSAAlignmentOptimizer() {}
public static double alignTwoMolsInPlace(StereoMolecule refMol, StereoMolecule fitMol) {
return alignTwoMolsInPlace(refMol,fitMol,0.5);
}
public static double alignTwoMolsInPlace(StereoMolecule refMol, StereoMolecule fitMol, double ppWeight) {
PheSASetting setting = new PheSASetting();
setting.setPpWeight(ppWeight);
double similarity = 0.0;
MolecularVolume refVol = new MolecularVolume(refMol);
MolecularVolume fitVol = new MolecularVolume(fitMol);
Coordinates origCOM = new Coordinates(refVol.getCOM());
Conformer refConf = new Conformer(refMol);
Conformer fitConf = new Conformer(fitMol);
Rotation rotation = refVol.preProcess(refConf);
rotation = rotation.getInvert();
fitVol.preProcess(fitConf);
AlignmentResult bestSolution = createAlignmentSolutions(Collections.singletonList(refVol), Collections.singletonList(fitVol),setting).get(0);
similarity = bestSolution.getSimilarity();
for(int a=0;a alignToNegRecImg(ShapeVolume ref, List extends ShapeVolume> fitVols, PheSASetting setting) {
for(ShapeVolume shapeVol : fitVols) {
shapeVol.removeRings();
}
List alignmentSolutions = createAlignmentSolutions(Collections.singletonList(ref),fitVols,setting);
List results = new ArrayList<>();
int counter = 0;
for(AlignmentResult solution : alignmentSolutions) {
if(counter++>=BEST_RESULT_SIZE) {
break;
}
results.add(solution);
}
return results;
}
public static List createAlignmentSolutions(List extends ShapeVolume> refVols, List extends ShapeVolume> fitVols, PheSASetting setting) {
int pmiOpti = setting.nrOptimizationsPMI;
List alignmentSolutions = new ArrayList();
for(ShapeVolume molVol : refVols) {
for(PPGaussian ppg : molVol.getPPGaussians()) {
if(ppg.getPharmacophorePoint().getFunctionalityIndex()==PharmacophoreCalculator.EXIT_VECTOR_ID) {
ppg.setWeight(EXIT_VECTOR_WEIGHT);
}
}
}
List triangleSolutions = new ArrayList();
if(setting.useTriangle)
triangleSolutions = getBestTriangleAlignments(refVols,fitVols,setting);
alignmentSolutions.addAll(triangleSolutions);
List pmiSolutions = new ArrayList();
for(int i=0;i sortedPMISolutions = pmiSolutions.stream()
.sorted(Comparator.reverseOrder())
.collect(Collectors.toList());
int counter = 0;
for(AlignmentResult pmiAlignment : sortedPMISolutions) {
if(counter++>pmiOpti)
break;
ShapeVolume refVol = refVols.get(pmiAlignment.getRefConformerIndex());
ShapeVolume fitVol = new ShapeVolume(fitVols.get(pmiAlignment.getConformerIndex()));
TransformationSequence bestTransform = pmiAlignment.getTransform();
fitVol.transform(bestTransform);
PheSAAlignment shapeAlignment = new PheSAAlignment(refVol,fitVol,setting.ppWeight);
TransformationSequence optimizedTransform = new TransformationSequence();
double[] r = shapeAlignment.findAlignment(PheSAAlignment.initialTransform(0),optimizedTransform,true,setting.simMode);
pmiAlignment.getTransform().addTransformation(optimizedTransform);
AlignmentResult optimizedPMIAlignment = new AlignmentResult(r[0],pmiAlignment.getTransform(),pmiAlignment.getRefConformerIndex(),pmiAlignment.getConformerIndex());
optimizedPMIAlignment.setSimilarityContributions(r);
alignmentSolutions.add(optimizedPMIAlignment);
}
List sortedSolutions = alignmentSolutions.stream()
.sorted(Comparator.reverseOrder())
.collect(Collectors.toList());
return sortedSolutions;
}
public static double[] align(PheSAMolecule refShape, PheSAMolecule fitShape, StereoMolecule[] bestAlignment, PheSASetting setting) {
double[] result = new double[4]; //overall sim, ppSimilarity and additional volume similarity contribution
List alignmentSolutions = createAlignmentSolutions(refShape.getVolumes(),fitShape.getVolumes(),setting);
AlignmentResult bestResult = alignmentSolutions.get(0);
StereoMolecule refMol = refShape.getConformer(bestResult.getRefConformerIndex());
StereoMolecule fitMol = fitShape.getConformer(bestResult.getConformerIndex());
bestResult.getTransform().apply(fitMol);
result = bestResult.getSimilarityContributions();
bestAlignment[0] = refMol;
bestAlignment[1] = fitMol;
int n1 = refShape.getVolumes().get(0).getExitVectorGaussians().size();
int n2 = fitShape.getVolumes().get(0).getExitVectorGaussians().size();
if(refShape.getVolumes().get(0).getExitVectorGaussians().size()!=0 ||
refShape.getVolumes().get(0).getExitVectorGaussians().size()!=0) {
// there are exit vectors
if(n1!=n2) { //different number of exit vectors --> no match
result[0] = 0.0;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
}
}
return result;
}
private static List getBestTriangleAlignments(List extends ShapeVolume> refVols, List extends ShapeVolume> fitVols, PheSASetting setting) {
List triangleResults = new ArrayList();
for(int i=0;i> refTriangles = PPTriangleCreator.create(refVol.getPPGaussians(), refVol.getCOM());
for(int j=0;j> fitTriangles = PPTriangleCreator.create(fitVol.getPPGaussians(),fitVol.getCOM());
triangleResults.addAll(PPTriangleMatcher.getMatchingTransforms(refTriangles, fitTriangles,i,j,setting.useDirectionality));
}
}
List sortedTriangleResults = triangleResults.stream()
.sorted(Comparator.reverseOrder())
.collect(Collectors.toList());
List optimizedResults = new ArrayList();
if(triangleResults.size()!=0) { // found triangle alignments
double[][] alignments = PheSAAlignment.initialTransform(0);
int counter = 0;
for(AlignmentResult result: sortedTriangleResults) {
if(counter++>setting.nrOptimizationsTriangle)
break;
ShapeVolume refVol = refVols.get(result.getRefConformerIndex());
ShapeVolume fitVol = new ShapeVolume(fitVols.get(result.getConformerIndex()));
TransformationSequence bestTransform = result.getTransform();
fitVol.transform(bestTransform);
PheSAAlignment shapeAlignment = new PheSAAlignment(refVol,fitVol,setting.ppWeight);
TransformationSequence optTransform = new TransformationSequence();
double[] r = shapeAlignment.findAlignment(alignments,optTransform,true, setting.simMode);
bestTransform.addTransformation(optTransform);
AlignmentResult optimizedResult = new AlignmentResult(r[0], bestTransform, result.getRefConformerIndex(), result.getConformerIndex());
optimizedResult.setSimilarityContributions(r);
optimizedResults.add(optimizedResult);
}
}
List sortedSolutions = optimizedResults.stream()
.sorted(Comparator.reverseOrder())
.collect(Collectors.toList());
return sortedSolutions;
}
private static double[][] createSubAlignments(ShapeVolume refVol, double[][] baseTransforms) {
final long seed = 12345L;
final int maxPoints = 10;
final int points = Math.min(refVol.getAtomicGaussians().size(), maxPoints);
Random rnd = new Random(seed);
List transforms = new ArrayList<>();
for(int i=0;i{
private double similarity;
private TransformationSequence transformation;
private int conformerIndex;
private int refConformerIndex;
private double[] similarityContributions;
public AlignmentResult(double similarity, TransformationSequence transformation, int refConformerIndex, int conformerIndex) {
this.similarity = similarity;
this.transformation = transformation;
this.refConformerIndex = refConformerIndex;
this.conformerIndex = conformerIndex;
}
public double[] getSimilarityContributions() {
return similarityContributions;
}
public void setSimilarityContributions(double[] similarityContributions) {
this.similarityContributions = similarityContributions;
}
public TransformationSequence getTransform() {
return transformation;
}
public double getSimilarity() {
return similarity;
}
public int getConformerIndex() {
return conformerIndex;
}
public int getRefConformerIndex() {
return refConformerIndex;
}
@Override
public int compareTo(AlignmentResult o) {
return Double.compare(similarity, o.similarity);
}
}
/**
* @author wahljo1
*
*/
public static class PheSASetting {
public double getPpWeight() {
return ppWeight;
}
public void setPpWeight(double ppWeight) {
this.ppWeight = ppWeight;
}
public SimilarityMode getSimMode() {
return simMode;
}
public void setSimMode(SimilarityMode simMode) {
this.simMode = simMode;
}
public boolean isUseDirectionality() {
return useDirectionality;
}
public void setUseDirectionality(boolean useDirectionality) {
this.useDirectionality = useDirectionality;
}
public int getNrOptimizationsPMI() {
return nrOptimizationsPMI;
}
public void setNrOptimizationsPMI(int nrOptimizationsPMI) {
this.nrOptimizationsPMI = nrOptimizationsPMI;
}
public int getNrOptimizationsTriangle() {
return nrOptimizationsTriangle;
}
public void setNrOptimizationsTriangle(int nrOptimizationsTriangle) {
this.nrOptimizationsTriangle = nrOptimizationsTriangle;
}
private double ppWeight;
private SimilarityMode simMode;
private boolean useDirectionality;
private boolean useTriangle;
public boolean isUseTriangle() {
return useTriangle;
}
public void setUseTriangle(boolean useTriangle) {
this.useTriangle = useTriangle;
}
private int nrOptimizationsPMI;
private int nrOptimizationsTriangle;
private static final String DELIMITER1 ="_";
public PheSASetting() {
this.ppWeight = 0.5;
this.simMode = SimilarityMode.TANIMOTO;
this.useDirectionality = true;
this.useTriangle = true;
this.nrOptimizationsPMI = PheSAAlignmentOptimizer.PMI_OPTIMIZATIONS;
this.nrOptimizationsTriangle = PheSAAlignmentOptimizer.TRIANGLE_OPTIMIZATIONS;
}
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(Double.toString(ppWeight));
sb.append(DELIMITER1);
sb.append(simMode.toString());
sb.append(DELIMITER1);
sb.append(Boolean.toString(useDirectionality));
sb.append(DELIMITER1);
sb.append(Boolean.toString(useTriangle));
sb.append(DELIMITER1);
sb.append(Integer.toString(nrOptimizationsPMI));
sb.append(DELIMITER1);
sb.append(Integer.toString(nrOptimizationsTriangle));
return sb.toString();
}
public static PheSASetting fromString(String encoded) {
PheSASetting setting = new PheSASetting();
String[] split = encoded.split(DELIMITER1);
setting.setPpWeight(Double.parseDouble(split[0]));
setting.setSimMode(SimilarityMode.valueOf(split[1]));
setting.setUseDirectionality(Boolean.parseBoolean(split[2]));
setting.setUseTriangle(Boolean.parseBoolean(split[3]));
setting.setNrOptimizationsPMI(Integer.parseInt(split[4]));
setting.setNrOptimizationsTriangle(Integer.parseInt(split[5]));
return setting;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy