All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.chem.coords.InventorFragment Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
/*
 * Copyright (c) 1997 - 2016
 * Actelion Pharmaceuticals Ltd.
 * Gewerbestrasse 16
 * CH-4123 Allschwil, Switzerland
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of the the copyright holder nor the
 *    names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * @author Thomas Sander
 */

package com.actelion.research.chem.coords;

import com.actelion.research.chem.StereoMolecule;

import java.util.ArrayList;
import java.util.Arrays;

public class InventorFragment {
	private static final double cCollisionLimitBondRotation = 0.8;
	private static final double cCollisionLimitAtomMovement = 0.5;

	private final int CIRCULAR_BINS = 36;

	protected int[] mGlobalAtom;
	protected int[] mGlobalBond;
	protected int[] mGlobalToLocalAtom;
	protected int[] mPriority;
	protected double[] mAtomX;
	protected double[] mAtomY;
	protected boolean mKeepMarkedAtoms;

	private StereoMolecule mMol;
	private boolean	mMinMaxAvail;
	private double mMinX;
	private double mMinY;
	private double mMaxX;
	private double mMaxY;
	private double mCollisionPanalty;
	private int[][] mFlipList;
	private int[] mSortedAtom;

	protected InventorFragment(StereoMolecule mol, int atoms, boolean keepMarkedAtoms) {
		mMol = mol;
		mKeepMarkedAtoms = keepMarkedAtoms;
		mGlobalAtom = new int[atoms];
		mPriority = new int[atoms];
		mAtomX = new double[atoms];
		mAtomY = new double[atoms];
	}

	protected InventorFragment(InventorFragment f) {
		mMol = f.mMol;
		mKeepMarkedAtoms = f.mKeepMarkedAtoms;
		mGlobalAtom = new int[f.size()];
		mPriority = new int[f.size()];
		mAtomX = new double[f.size()];
		mAtomY = new double[f.size()];
		for (int i=0; ithe bond atom that lies on the larger side of the bond
		// [1]->the bond atom on the smaller side of the bond
		// [2...n]->all other atoms on the smaller side of the bond.
		//		  These are the ones getting flipped on the mirror
		//		  line defined by the bond.
		if (mFlipList == null)
			mFlipList = new int[mMol.getAllBonds()][];

		if (mFlipList[bond] == null) {
			int[] graphAtom = new int[mGlobalAtom.length];
			boolean[] isOnSide = new boolean[mMol.getAllAtoms()];
			int atom1 = mMol.getBondAtom(0, bond);
			int atom2 = mMol.getBondAtom(1, bond);
			graphAtom[0] = atom1;
			isOnSide[atom1] = true;
			int current = 0;
			int highest = 0;
			while (current <= highest) {
				for (int i=0; i mGlobalAtom.length/2);

			// if we retain core atoms and the smaller side contains core atoms, then flip the larger side
			if (mKeepMarkedAtoms) {
				boolean coreOnSide = false;
				boolean coreOffSide = false;
				for (int i = 0; i< mGlobalAtom.length; i++) {
					int atom = mGlobalAtom[i];
					if (mMol.isMarkedAtom(atom) && atom != atom1 && atom != atom2) {
						if (isOnSide[mGlobalAtom[i]])
							coreOnSide = true;
						else
							coreOffSide = true;
					}
				}
				if (coreOnSide != coreOffSide)
					flipOtherSide = coreOnSide;
			}

			int count = 2;
			mFlipList[bond] = new int[flipOtherSide ? mGlobalAtom.length-highest : highest+2];
			for (int i = 0; i< mGlobalAtom.length; i++) {
				if (mGlobalAtom[i] == atom1)
					mFlipList[bond][flipOtherSide ? 0 : 1] = i;
				else if (mGlobalAtom[i] == atom2)
					mFlipList[bond][flipOtherSide ? 1 : 0] = i;
				else if (flipOtherSide ^ isOnSide[mGlobalAtom[i]])
					mFlipList[bond][count++] = i;
			}
		}

		double x = mAtomX[mFlipList[bond][0]];
		double y = mAtomY[mFlipList[bond][0]];
		double mirrorAngle = InventorAngle.getAngle(x, y, mAtomX[mFlipList[bond][1]],
				mAtomY[mFlipList[bond][1]]);

		for (int i=2; i=2) ? corner-2 : corner+2);
			if (maxGain < gain) {
				maxGain = gain;
				maxCorner = corner;
			}
		}

		double sumHeight = getHeight() + f.getHeight();
		double sumWidth = 0.75 * (getWidth() + f.getWidth());
		double maxHeight = Math.max(getHeight(), f.getHeight());
		double maxWidth = 0.75 * Math.max(getWidth(), f.getWidth());

		double bestCornerSize = Math.sqrt((sumHeight - maxGain) * (sumHeight - maxGain)
				+ (sumWidth - 0.75 * maxGain) * (sumWidth - 0.75 * maxGain));
		double toppedSize = Math.max(maxWidth, sumHeight);
		double besideSize = Math.max(maxHeight, sumWidth);

		if (bestCornerSize < toppedSize && bestCornerSize < besideSize) {
			switch(maxCorner) {
				case 0:
					f.translate(mMaxX - f.mMinX - maxGain + 1.0, mMinY - f.mMaxY + maxGain - 1.0);
					break;
				case 1:
					f.translate(mMaxX - f.mMinX - maxGain + 1.0, mMaxY - f.mMinY - maxGain + 1.0);
					break;
				case 2:
					f.translate(mMinX - f.mMaxX + maxGain - 1.0, mMaxY - f.mMinY - maxGain + 1.0);
					break;
				case 3:
					f.translate(mMinX - f.mMaxX + maxGain - 1.0, mMinY - f.mMaxY + maxGain - 1.0);
					break;
			}
		}
		else if (besideSize < toppedSize) {
			f.translate(mMaxX - f.mMinX + 1.0, (mMaxY + mMinY - f.mMaxY - f.mMinY) / 2);
		}
		else {
			f.translate((mMaxX + mMinX - f.mMaxX - f.mMinX) / 2, mMaxY - f.mMinY + 1.0);
		}
	}

	private void calculateMinMax() {
		if (mMinMaxAvail)
			return;

		mMinX = mAtomX[0];
		mMaxX = mAtomX[0];
		mMinY = mAtomY[0];
		mMaxY = mAtomY[0];
		for (int i = 0; i< mGlobalAtom.length; i++) {
			double surplus = getAtomSurplus(i);

			if (mMinX > mAtomX[i] - surplus)
				mMinX = mAtomX[i] - surplus;
			if (mMaxX < mAtomX[i] + surplus)
				mMaxX = mAtomX[i] + surplus;
			if (mMinY > mAtomY[i] - surplus)
				mMinY = mAtomY[i] - surplus;
			if (mMaxY < mAtomY[i] + surplus)
				mMaxY = mAtomY[i] + surplus;
		}

		mMinMaxAvail = true;
	}

	private double getCornerDistance(int corner) {
		double minDistance = 9999.0;
		for (int atom = 0; atom< mGlobalAtom.length; atom++) {
			double surplus = getAtomSurplus(atom);
			double d = 0.0;
			switch (corner) {
				case 0:	// top right
					d = mMaxX - 0.5 * (mMaxX + mMinY + mAtomX[atom] - mAtomY[atom]);
					break;
				case 1:	// bottom right
					d = mMaxX - 0.5 * (mMaxX - mMaxY + mAtomX[atom] + mAtomY[atom]);
					break;
				case 2:	// bottom left
					d = 0.5 * (mMinX + mMaxY + mAtomX[atom] - mAtomY[atom]) - mMinX;
					break;
				case 3:	// top left
					d = 0.5 * (mMinX - mMinY + mAtomX[atom] + mAtomY[atom]) - mMinX;
					break;
			}

			if (minDistance > d - surplus)
				minDistance = d - surplus;
		}

		return minDistance;
	}

	private double getAtomSurplus(int atom) {
		return (mMol.getAtomQueryFeatures(mGlobalAtom[atom]) != 0) ? 0.6
				: (mMol.getAtomicNo(mGlobalAtom[atom]) != 6) ? 0.25 : 0.0;
	}

	protected ArrayList getCollisionList() {
		mCollisionPanalty = 0.0;
		ArrayList collisionList = new ArrayList();
		for (int i = 1; i< mGlobalAtom.length; i++) {
			for (int j=0; j atom)
					fragmentBonds++;
//			for (int j=connAtoms; j atom && isMember(mMol.getConnAtom(atom, j)))
//					fragmentBonds++;
		}

		mGlobalBond = new int[fragmentBonds];
		mGlobalToLocalAtom = new int[mMol.getAllAtoms()];

		fragmentBonds = 0;
		for (int i=0; i atom)
					mGlobalBond[fragmentBonds++] = mMol.getConnBond(atom, j);
//			for (int j=connAtoms; j atom && isMember(mMol.getConnAtom(atom, j)))
//					mGlobalBond[fragmentBonds++] = mMol.getConnBond(atom, j);
		}
	}

	protected void optimizeAtomCoordinates(int atom) {
		double x = mAtomX[atom];
		double y = mAtomY[atom];

		InventorAngle[] collisionForce = new InventorAngle[4];

		int forces = 0;
		for (int i = 0; i< mGlobalBond.length; i++) {
			if (forces >= 4)
				break;

			if (atom == mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]
			 || atom == mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])])
				continue;

			double x1 = mAtomX[mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]];
			double y1 = mAtomY[mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]];
			double x2 = mAtomX[mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])]];
			double y2 = mAtomY[mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])]];
			double d1 = Math.sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y));
			double d2 = Math.sqrt((x2-x)*(x2-x)+(y2-y)*(y2-y));
			double bondLength = Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

			if (d1 0) {
			InventorAngle force = CoordinateInventor.getMeanAngle(collisionForce, forces);
			mAtomX[atom] += force.mLength * Math.sin(force.mAngle);
			mAtomY[atom] += force.mLength * Math.cos(force.mAngle);
		}
	}

	/**
	 * @param x
	 * @param y
	 * @return angle
	 */
	protected double calculatePreferredAttachmentAngle(double x, double y, int neighbourAtomCount, double padding) {
		if (size() == 1)
			return 0;

		final double BIN_ANGLE = 2.0 * Math.PI / CIRCULAR_BINS;

		double neighbourRadius = padding
				+ Math.sqrt(neighbourAtomCount);	// assume a little large, because they neighbour exposes its wide side

		double[] distance = new double[CIRCULAR_BINS];
		for (int i = 0; i< mGlobalAtom.length; i++) {
			double angle = InventorAngle.getAngle(x, y, mAtomX[i], mAtomY[i]);
			int bin = correctBin((int)Math.round(angle * CIRCULAR_BINS / (2.0*Math.PI)));
			double dx = x - mAtomX[i];
			double dy = y - mAtomY[i];
			double sd = dx*dx + dy*dy;
			if (distance[bin] < sd)
				distance[bin] = sd;
			}
		double maxDistance = -1;
		int maxBin = -1;
		for (int i=0; i= minDistance)
				continue;

			double localMinDistance = distance[bin];

			// check, whether localMinDistance is compatible with adjacent bins and adapt, if needed
			for (int i=1; i localMinDistance) {
				minDistance = localMinDistance;
				minBin = bin;
				}
			}

		return Math.PI * 2 * minBin / CIRCULAR_BINS;
	}

	private int correctBin(int bin) {
		return bin < 0 ? bin + CIRCULAR_BINS : bin >= CIRCULAR_BINS ? bin - CIRCULAR_BINS : bin;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy