com.actelion.research.chem.forcefield.mmff.TorsionAngle Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
package com.actelion.research.chem.forcefield.mmff;
import java.util.ArrayList;
import java.util.List;
/**
* Torsional Angle energy term class. This energy term represents the
* energy associated with the torsional angle formed by four atoms
* A1..A4:
*
* A1
* \
* A2--A3
* \
* A4
*
*/
public class TorsionAngle implements EnergyTerm {
public final int a1;
public final int a2;
public final int a3;
public final int a4;
public final int a1t;
public final int a2t;
public final int a3t;
public final int a4t;
public final double v1;
public final double v2;
public final double v3;
/**
* Construct a new torsion angle energy term.
* @param table The tables parameter object.
* @param mol The molecule.
* @param a1 Index of atom 1 in mol.
* @param a2 Index of atom 2 in mol.
* @param a3 Index of atom 3 in mol.
* @param a4 Index of atom 4 in mol.
*/
public TorsionAngle(Tables table, MMFFMolecule mol, int a1, int a2,
int a3, int a4) {
this.a1 = a1;
this.a2 = a2;
this.a3 = a3;
this.a4 = a4;
a1t = mol.getAtomType(a1);
a2t = mol.getAtomType(a2);
a3t = mol.getAtomType(a3);
a4t = mol.getAtomType(a4);
com.actelion.research.chem.forcefield.mmff.table.Torsion.Kb kbs = table.torsion.getForceConstants(mol,
a1, a2, a3, a4);
v1 = kbs.v1;
v2 = kbs.v2;
v3 = kbs.v3;
}
/**
* Calculates the torsional energy.
* @param pos The atoms current positions array.
* @return The energy.
*/
@Override
public double getEnergy(double[] pos) {
Vector3 r1 = new Vector3(pos, a1, a2);
Vector3 r2 = new Vector3(pos, a3, a2);
Vector3 r3 = new Vector3(pos, a2, a3);
Vector3 r4 = new Vector3(pos, a4, a3);
Vector3 t1 = r1.cross(r2);
Vector3 t2 = r3.cross(r4);
double cosPhi = t1.cosAngle(t2);
double cos2Phi = 2.0 * cosPhi * cosPhi - 1.0;
double cos3Phi = cosPhi * (2.0 * cos2Phi - 1.0);
return 0.5 * (v1*(1.0 + cosPhi)
+ v2*(1.0 - cos2Phi)
+ v3*(1.0 + cos3Phi));
}
/**
* Calculates the gradient and adds it to the gradients array.
* @param pos The atoms current positions array.
* @param grad the atoms current gradients array.
*/
@Override
public void getGradient(double[] pos, double[] grad) {
Vector3[] r = new Vector3[]{
new Vector3(pos, a2, a1),
new Vector3(pos, a2, a3),
new Vector3(pos, a3, a2),
new Vector3(pos, a3, a4)
};
Vector3[] t = new Vector3[]{
r[0].cross(r[1]),
r[2].cross(r[3])
};
double[] d = new double[]{
t[0].length(),
t[1].length()
};
if (Math.abs(d[0]) < 0.00001 || Math.abs(d[1]) < 0.00001)
return;
t[0] = t[0].normalise();
t[1] = t[1].normalise();
double cosPhi = t[0].dot(t[1]);
double sinPhiSq = 1.0 - cosPhi * cosPhi;
double sinPhi = ((sinPhiSq > 0.0) ? Math.sqrt(sinPhiSq) : 0.0);
double sin2Phi = 2.0 * sinPhi * cosPhi;
double sin3Phi = 3.0 * sinPhi - 4.0 * sinPhi * sinPhiSq;
double dE_dPhi = 0.5 * (-(v1) * sinPhi + 2.0 * v2 * sin2Phi
- 3.0 * v3 * sin3Phi);
double sinTerm = -dE_dPhi * (Math.abs(sinPhi) < 0.00001
? (1.0 / cosPhi) : (1.0 / sinPhi));
double[] dCos_dT = new double[]{
1.0 / d[0] * (t[1].x - cosPhi * t[0].x),
1.0 / d[0] * (t[1].y - cosPhi * t[0].y),
1.0 / d[0] * (t[1].z - cosPhi * t[0].z),
1.0 / d[1] * (t[0].x - cosPhi * t[1].x),
1.0 / d[1] * (t[0].y - cosPhi * t[1].y),
1.0 / d[1] * (t[0].z - cosPhi * t[1].z)
};
grad[3*a1+0] += sinTerm * (dCos_dT[2] * r[1].y - dCos_dT[1] * r[1].z);
grad[3*a1+1] += sinTerm * (dCos_dT[0] * r[1].z - dCos_dT[2] * r[1].x);
grad[3*a1+2] += sinTerm * (dCos_dT[1] * r[1].x - dCos_dT[0] * r[1].y);
grad[3*a2+0] += sinTerm * (dCos_dT[1] * (r[1].z - r[0].z)
+ dCos_dT[2] * (r[0].y - r[1].y)
+ dCos_dT[4] * (-r[3].z)
+ dCos_dT[5] * (r[3].y));
grad[3*a2+1] += sinTerm * (dCos_dT[0] * (r[0].z - r[1].z)
+ dCos_dT[2] * (r[1].x - r[0].x)
+ dCos_dT[3] * (r[3].z)
+ dCos_dT[5] * (-r[3].x));
grad[3*a2+2] += sinTerm * (dCos_dT[0] * (r[1].y - r[0].y)
+ dCos_dT[1] * (r[0].x - r[1].x)
+ dCos_dT[3] * (-r[3].y)
+ dCos_dT[4] * (r[3].x));
grad[3*a3+0] += sinTerm * (dCos_dT[1] * (r[0].z)
+ dCos_dT[2] * (-r[0].y)
+ dCos_dT[4] * (r[3].z - r[2].z)
+ dCos_dT[5] * (r[2].y - r[3].y));
grad[3*a3+1] += sinTerm * (dCos_dT[0] * (-r[0].z)
+ dCos_dT[2] * (r[0].x)
+ dCos_dT[3] * (r[2].z - r[3].z)
+ dCos_dT[5] * (r[3].x - r[2].x));
grad[3*a3+2] += sinTerm * (dCos_dT[0] * (r[0].y)
+ dCos_dT[1] * (-r[0].x)
+ dCos_dT[3] * (r[3].y - r[2].y)
+ dCos_dT[4] * (r[2].x - r[3].x));
grad[3*a4+0] += sinTerm * (dCos_dT[4] * r[2].z - dCos_dT[5] * r[2].y);
grad[3*a4+1] += sinTerm * (dCos_dT[5] * r[2].x - dCos_dT[3] * r[2].z);
grad[3*a4+2] += sinTerm * (dCos_dT[3] * r[2].y - dCos_dT[4] * r[2].x);
}
/**
* Checks that at least one of the constants is non-zero.
* @return True if any constant is non-zero, false otherwise.
*/
public boolean nonZero() {
return Math.abs(v1) > 0.001
|| Math.abs(v2) > 0.001
|| Math.abs(v3) > 0.001;
}
/**
* Helper function that builds a list of TorsionAngles for a molecule.
* @param t The tables object.
* @param mol The molecule to generate torsions for.
* @return Am array of TorsionAngle.
*/
public static List findIn(Tables t, MMFFMolecule mol) {
ArrayList tors = new ArrayList();
for (int a1=0; a1 a1) {
TorsionAngle tor
= new TorsionAngle(t, mol, a1, a2, a3, a4);
if (tor.nonZero())
tors.add(tor);
}
}
}
}
}
return tors;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy