com.actelion.research.util.DoubleVec Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
package com.actelion.research.util;
import java.text.DecimalFormat;
import java.util.Random;
import java.util.Vector;
// Please rename this class
public class DoubleVec implements Comparable {
private static final DecimalFormat NF = new DecimalFormat("0.000");
private static final Random RAND = new Random();
public static final int COSINE = 1;
public static final int EUCLIDEAN = 2;
public static final int EUCLIDEAN_FAST = 3;
public static final int TANIMOTO = 4;
public static final int TANIMOTO_INV = 5;
private double data[];
// Dot product for Tanimoto
private double mDotProd;
public DoubleVec(DoubleVec dVec) {
init();
data = new double[dVec.data.length];
for (int ii = 0; ii < data.length; ii++) {
data[ii] = dVec.data[ii];
}
}
public DoubleVec(DoubleVec dVec, boolean bDotProd) {
init();
data = new double[dVec.data.length];
for (int ii = 0; ii < data.length; ii++) {
data[ii] = dVec.data[ii];
}
if(bDotProd)
mDotProd = mult(data, data);
}
public DoubleVec(int iSize) {
init();
data = new double[iSize];
}
public DoubleVec(double[] dVec) {
init();
data = new double[dVec.length];
for (int ii = 0; ii < data.length; ii++) {
data[ii] = dVec[ii];
}
}
public DoubleVec(int[] dVec) {
init();
data = new double[dVec.length];
for (int ii = 0; ii < data.length; ii++) {
data[ii] = dVec[ii];
}
}
public DoubleVec(double[] dVec, boolean bDotProd) {
init();
data = new double[dVec.length];
for (int ii = 0; ii < data.length; ii++) {
data[ii] = dVec[ii];
}
if(bDotProd)
mDotProd = mult(data, data);
}
public DoubleVec(Vector vec) {
init();
data = new double[vec.size()];
for (int i = 0; i < data.length; i++) {
data[i] = vec.get(i);
}
}
public DoubleVec(Vector vec, boolean bDotProd) {
init();
data = new double[vec.size()];
for (int i = 0; i < data.length; i++) {
data[i] = vec.get(i);
}
if(bDotProd)
mDotProd = mult(data, data);
}
/**
* Adds aor subtracts a random value to the original value. The range is
* specified by the percentage.
*
* @param dPercentage maximum range for the value change
*/
public void addRNDvalue(double dPercentage) {
Random rnd = new Random();
for (int ii = 0; ii < data.length; ii++) {
double dVal = data[ii] * (dPercentage / 100.0) * rnd.nextDouble();
if (rnd.nextBoolean()) {
data[ii] = data[ii] + dVal;
}
else {
data[ii] = data[ii] - dVal;
}
}
}
public DoubleVec add(DoubleVec dvVec) {
DoubleVec ret = new DoubleVec(data.length);
if (data.length != dvVec.data.length) {
throw new RuntimeException();
}
for (int ii = 0; ii < ret.data.length; ii++) {
ret.data[ii] = data[ii] + dvVec.data[ii];
}
return ret;
}
public void addNoise(double fracNoise, double min, double max) {
double d = max - min;
for (int ii = 0; ii < data.length; ii++)
if(RAND.nextDouble() < (fracNoise)) {
double rnd = min + (RAND.nextDouble() * d);
data[ii] = rnd;
}
}
/**
*
*
* @return -1 if the first different value is smaller than the corresponding
* value in dv. 0 if bot vectors are equal. 1 if the first different value
* is bigger than the corresponding value in dv.
*/
public Object clone() {
DoubleVec vec = new DoubleVec(this);
return vec;
}
public int compareTo(DoubleVec dv) {
int cmp = 0;
for (int i = 0; i < data.length; i++) {
if (data[i] > dv.data[i]) {
cmp = 1;
break;
}
else if (data[i] < dv.data[i]) {
cmp = -1;
break;
}
}
return cmp;
}
public static double distance(DoubleVec dVec1, DoubleVec dVec2, int metric) throws
Exception {
double dDist = 0;
// Vectors have to be normed.
if (metric == DoubleVec.COSINE) {
dDist = getCosine(dVec1, dVec2);
}
else if (metric == DoubleVec.EUCLIDEAN) {
dDist = euclideanDistance(dVec1, dVec2);
}
else if (metric == DoubleVec.EUCLIDEAN_FAST) {
dDist = getEuclideanDistanceFast(dVec1, dVec2);
}
else if (metric == DoubleVec.TANIMOTO) {
dDist = getTanimotoSimilarity(dVec1, dVec2);
}
else if (metric == DoubleVec.TANIMOTO_INV) {
dDist = getTanimotoDistanceDotProd(dVec1, dVec2);
}
else {
throw new Exception("Unknown distance metric.");
}
return dDist;
}
public static DoubleVec devide(DoubleVec dVec1, DoubleVec dVec2) {
DoubleVec dVecDev = new DoubleVec(dVec1.data.length);
for (int ii = 0; ii < dVec1.data.length; ii++) {
dVecDev.data[ii] = dVec1.data[ii] / dVec2.data[ii];
}
return dVecDev;
}
public boolean equal(DoubleVec dv) {
boolean bEq = true;
for (int ii = 0; ii < data.length; ii++) {
if(data[ii] != dv.data[ii]) {
bEq = false;
break;
}
}
return bEq;
}
public boolean equals(DoubleVec dv) {
boolean bEq = true;
for (int ii = 0; ii < data.length; ii++) {
if(data[ii] != dv.data[ii]) {
bEq = false;
break;
}
}
return bEq;
}
/**
* Euclidean distance
* @param dVec1
* @param dVec2
* @return
*/
static public double euclideanDistance(DoubleVec dVec1, DoubleVec dVec2) {
double dist = 0;
double sum = 0;
for (int i = 0; i < dVec1.data.length; i++) {
sum += (dVec1.data[i] - dVec2.data[i]) * (dVec1.data[i] - dVec2.data[i]);
}
dist = Math.sqrt(sum);
return dist;
}
static public double euclideanDistance(double [] arr1, double [] arr2) {
double dist = 0;
double sum = 0;
for (int i = 0; i < arr1.length; i++) {
sum += (arr1[i] - arr2[i]) * (arr1[i] - arr2[i]);
}
dist = Math.sqrt(sum);
return dist;
}
static public double overlapDistance(DoubleVec dVec1, DoubleVec dVec2) {
double dDist = 0;
double occ1 = 0;
double occ2 = 0;
for (int ii = 0; ii < dVec1.data.length; ii++) {
if(dVec1.data[ii] != 0 )
occ1++;
if(dVec2.data[ii] != 0)
occ2++;
}
double dSum = 0;
double occ = 0;
for (int ii = 0; ii < dVec1.data.length; ii++) {
if(dVec1.data[ii] != 0 && dVec2.data[ii] != 0){
dSum += Math.abs(dVec1.data[ii] - dVec2.data[ii]);
occ++;
}
}
// dDist = Math.sqrt(dSum);
dDist = 1.0 - (occ / Math.min(occ1,occ2));
return dDist;
}
/**
* Euclidean distance without sqrt
* @param dVec1
* @param dVec2
* @return
*/
static public double getEuclideanDistanceFast(DoubleVec dVec1, DoubleVec dVec2) throws
ArrayIndexOutOfBoundsException {
double dSum = 0;
try {
for (int ii = 0; ii < dVec1.data.length; ii+=4) {
dSum += (dVec1.data[ii] - dVec2.data[ii]) * (dVec1.data[ii] - dVec2.data[ii]);
dSum += (dVec1.data[ii+1] - dVec2.data[ii+1]) * (dVec1.data[ii+1] - dVec2.data[ii+1]);
dSum += (dVec1.data[ii+2] - dVec2.data[ii+2]) * (dVec1.data[ii+2] - dVec2.data[ii+2]);
dSum += (dVec1.data[ii+3] - dVec2.data[ii+3]) * (dVec1.data[ii+3] - dVec2.data[ii+3]);
}
} catch (RuntimeException e) {
e.printStackTrace();
}
return dSum;
}
public double [] get() {
return data;
}
public double get(int col) {
return data[col];
}
public double getNorm() {
double dNorm = 0;
for (int ii = 0; ii < data.length; ii++) {
dNorm += (data[ii] * data[ii]);
}
dNorm = Math.sqrt(dNorm);
return dNorm;
}
/**
* Vectors have to be normed!
* @param dVec1 normed vector1
* @param dVec2 normed vector2
* @return Cosine
*/
static public double getCosine(DoubleVec dVec1, DoubleVec dVec2) {
double cosine = 0;
for (int ii = 0; ii < dVec1.data.length; ii++) {
cosine += dVec1.data[ii] * dVec2.data[ii];
}
return cosine;
}
static public double cubicDistance(DoubleVec dVec1, DoubleVec dVec2) {
double dSum = 0;
for (int ii = 0; ii < dVec1.data.length; ii++) {
double dDist = Math.abs( (dVec1.data[ii] - dVec2.data[ii]));
dSum += dDist * dDist * dDist;
}
return dSum;
}
public void initRND(double dMin, double dMax) {
double dRange = dMax - dMin;
for (int kk = 0; kk < data.length; kk++) {
double dVal = dRange * Math.random() + dMin;
data[kk] = dVal;
}
}
private void init() {
mDotProd = Double.NaN;
}
/**
* The array contains the maximum and the minimum values for the initialisation
* of each field in the double vector.
* @param dArrMaxMin row 0: max val, row 1 min val
*/
public void initRND(double[][] dArrMaxMin) {
for (int kk = 0; kk < data.length; kk++) {
// double dVal = (dRange * (new Random()).nextDouble()) + dMin;
double dRange = dArrMaxMin[0][kk] - dArrMaxMin[1][kk];
double dVal = dRange * Math.random() + dArrMaxMin[1][kk];
data[kk] = dVal;
}
}
static public double getManhattanBlockDistance(DoubleVec dVec1,
DoubleVec dVec2) {
double dDist = 0;
double dSum = 0;
for (int ii = 0; ii < dVec1.data.length; ii++) {
dSum += Math.abs(dVec1.data[ii] - dVec2.data[ii]);
}
dDist = Math.sqrt(dSum);
return dDist;
}
public DoubleVec mult(double dFactor) {
DoubleVec ret = new DoubleVec(data.length);
for (int ii = 0; ii < ret.data.length; ii++) {
ret.data[ii] = data[ii] * dFactor;
}
return ret;
}
public static double mult(DoubleVec dVec1, DoubleVec dVec2) {
double dSum = 0.0;
for (int ii = 0; ii < dVec1.data.length; ii++) {
dSum += dVec1.data[ii] * dVec2.data[ii];
}
return dSum;
}
private static double mult(double [] arr1, double [] arr2) {
double dSum = 0.0;
for (int ii = 0; ii < arr1.length; ii++) {
dSum += arr1[ii] * arr2[ii];
}
return dSum;
}
/**
* Elementwise multiplication
* @param dVec1 input vector
* @param dVec2 input vector
* @return DoubleVec
*/
public static DoubleVec multEl(DoubleVec dVec1, DoubleVec dVec2) {
DoubleVec dVecMult = new DoubleVec(dVec1.data.length);
for (int ii = 0; ii < dVec1.data.length; ii++) {
dVecMult.data[ii] = dVec1.data[ii] * dVec2.data[ii];
}
return dVecMult;
}
public void norm2One() {
double norm = getNorm();
for (int ii = 0; ii < data.length; ii++) {
data[ii] /= norm;
}
}
public static DoubleVec minus(DoubleVec dVec1, DoubleVec dVec2) {
DoubleVec dVecSub = new DoubleVec(dVec1.data.length);
for (int i = 0; i < dVec1.data.length; i++) {
dVecSub.data[i] = dVec1.data[i] - dVec2.data[i];
}
return dVecSub;
}
public void reduce(Vector vecIndices) {
double [] arr = new double [vecIndices.size()];
for (int i = 0; i < vecIndices.size(); i++) {
int iIndex = vecIndices.get(i);
arr[i] = data[iIndex];
}
data = arr;
}
public static DoubleVec plus(DoubleVec dVec1, DoubleVec dVec2) {
DoubleVec dVecSum = new DoubleVec(dVec1.data.length);
for (int ii = 0; ii < dVec1.data.length; ii++) {
dVecSum.data[ii] = dVec1.data[ii] + dVec2.data[ii];
}
return dVecSum;
}
public void set(double dVal) {
for (int ii = 0; ii < data.length; ii++) {
data[ii] = dVal;
}
}
public void set(double [] arr) {
data = new double[arr.length];
for (int ii = 0; ii < arr.length; ii++) {
data[ii] = arr[ii];
}
}
public void set(int [] arr) {
data = new double[arr.length];
for (int ii = 0; ii < arr.length; ii++) {
data[ii] = arr[ii];
}
}
public void set(int col, double val) {
data[col] = val;
}
public void set(int start, int end, double val) {
for (int ii = start; ii < end; ii++) {
data[ii] = val;
}
}
/*
public void set(int iSize, double dVal) {
data = new double[iSize];
set(dVal);
}
*/
public void setRNDvalue(double dCenter, double dRange) {
double dMin = dCenter - (dRange / 2);
for (int ii = 0; ii < data.length; ii++) {
double dVal = dRange * Math.random();
data[ii] = dMin + dVal;
}
}
public int size() {
return data.length;
}
public void setRNDvalue(double dRange) {
for (int ii = 0; ii < data.length; ii++) {
double dMin = data[ii] - (dRange / 2);
double dVal = dRange * Math.random();
data[ii] = dMin + dVal;
}
}
/**
* Substraction
* @param dvSub
* @return
*/
public DoubleVec sub(DoubleVec dvSub) {
DoubleVec ret = new DoubleVec(data.length);
for (int ii = 0; ii < ret.data.length; ii++) {
ret.data[ii] = data[ii] - dvSub.data[ii];
}
return ret;
}
/**
* Calculates the Tanimoto coefficient according
* broken link 22.01.2019 http://www.pnylab.com/pny/papers/nmet/nmet/
*
* @param dVec1 vector1
* @param dVec2 vector2
* @return Tanimoto: 1.0: maximum similarity, 0: maximum dissimilarity.
*
*/
static public double getTanimotoSimilarity(DoubleVec dVec1, DoubleVec dVec2) {
double dSum = 0;
double dAtB = mult(dVec1, dVec2);
double dAtA = mult(dVec1, dVec1);
double dBtB = mult(dVec2, dVec2);
dSum = dAtB / (dAtA + dBtB - dAtB);
return dSum;
}
/**
*
* @param d1
* @param d2
* @return 1 if totally similar, 0 if no overlap.
*/
static public double getTanimotoSimilarity(double[] d1, double[] d2) {
double dSum = 0;
double dAtB = mult(d1, d2);
double dAtA = mult(d1, d1);
double dBtB = mult(d2, d2);
dSum = dAtB / (dAtA + dBtB - dAtB);
return dSum;
}
/**
* Calculates the Inverse Tanimoto coefficient
* @param dVec1 vector1
* @param dVec2 vector2
* @return Tanimoto: 0.0: maximum similarity, 1.0: maximum dissimilarity.
*
*/
static public double getTanimotoDistance(DoubleVec dVec1, DoubleVec dVec2) {
double dSum = 0;
double dAtB = mult(dVec1, dVec2);
double dAtA = mult(dVec1, dVec1);
double dBtB = mult(dVec2, dVec2);
dSum = 1.0 - (dAtB / (dAtA + dBtB - dAtB));
return dSum;
}
static public double getTanimotoDistance(double[] d1, double[] d2) {
return 1.0 - getTanimotoSimilarity(d1,d2);
}
static public double getTanimotoDistanceDotProd(DoubleVec dVec1, DoubleVec dVec2) {
double dSum = 0;
double dAtB = mult(dVec1, dVec2);
double dAtA = dVec1.mDotProd;
double dBtB = dVec2.mDotProd;
dSum = 1.0 - (dAtB / (dAtA + dBtB - dAtB));
return dSum;
}
public String toString() {
StringBuilder str = new StringBuilder();
for (int ii = 0; ii < data.length; ii++) {
String sVal = NF.format(data[ii]);
str.append(sVal + " ");
}
return str.toString();
}
/**
*
* @param iNumDigits number of decimal places
* @return String with doubles in 0.0 notation
* 16.10.2003 MvK
*/
public String toString(int iNumDigits) {
StringBuffer str = new StringBuffer();
String sFormat = "0";
if(iNumDigits > 0)
sFormat += ".";
for (int ii = 0; ii < iNumDigits; ii++) {
sFormat = sFormat + "0";
}
DecimalFormat nf = new DecimalFormat(sFormat);
for (int ii = 0; ii < data.length; ii++) {
String sVal = nf.format(data[ii]);
str.append(sVal + " ");
}
return str.toString();
}
public double[] toArray() {
return data;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy