smile.clustering.CLARANS Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering;
import smile.math.Math;
import smile.math.distance.Distance;
import smile.util.MulticoreExecutor;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
/**
* Clustering Large Applications based upon RANdomized Search. CLARANS is an
* efficient medoid-based clustering algorithm. The k-medoids algorithm is an
* adaptation of the k-means algorithm. Rather than calculate the mean of the
* items in each cluster, a representative item, or medoid, is chosen for each
* cluster at each iteration. In CLARANS, the process of finding k medoids from
* n objects is viewed abstractly as searching through a certain graph. In the
* graph, a node is represented by a set of k objects as selected medoids. Two
* nodes are neighbors if their sets differ by only one object. In each iteration,
* CLARANS considers a set of randomly chosen neighbor nodes as candidate
* of new medoids. We will move to the neighbor node if the neighbor
* is a better choice for medoids. Otherwise, a local optima is discovered. The
* entire process is repeated multiple time to find better.
*
* CLARANS has two parameters: the maximum number of neighbors examined
* (maxNeighbor) and the number of local minima obtained (numLocal). The
* higher the value of maxNeighbor, the closer is CLARANS to PAM, and the
* longer is each search of a local minima. But the quality of such a local
* minima is higher and fewer local minima needs to be obtained.
*
*
References
*
* - R. Ng and J. Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE TRANS. KNOWLEDGE AND DATA ENGINEERING, 2002.
*
*
* @param the type of input object.
*
* @author Haifeng Li
*/
public class CLARANS extends PartitionClustering {
private static final long serialVersionUID = 1L;
/**
* The total distortion.
*/
double distortion;
/**
* The distance measure for calculation of distortion.
*/
private Distance distance;
/**
* The number of local minima to search for.
*/
private int numLocal;
/**
* The maximum number of neighbors examined during a search of local minima.
*/
private int maxNeighbor;
/**
* The medoids of each cluster.
*/
T[] medoids;
/**
* Constructor. Clustering data into k clusters. The maximum number of
* random search is set to 0.02 * k * (n - k), where n is the number of
* data and k is the number clusters. The number of local searches is
* max(8, numProcessors).
*
* @param data the dataset for clustering.
* @param distance the distance/dissimilarity measure.
* @param k the number of clusters.
*/
public CLARANS(T[] data, Distance distance, int k) {
this(data, distance, k, (int) Math.round(0.0125 * k * (data.length - k)));
}
/**
* Constructor. Clustering data into k clusters.
* @param data the dataset for clustering.
* @param distance the distance/dissimilarity measure.
* @param k the number of clusters.
* @param maxNeighbor the maximum number of neighbors examined during a random search of local minima.
*/
public CLARANS(T[] data, Distance distance, int k, int maxNeighbor) {
this(data, distance, k, maxNeighbor, Math.max(2, MulticoreExecutor.getThreadPoolSize()));
}
/**
* Constructor. Clustering data into k clusters.
* @param data the dataset for clustering.
* @param distance the distance/dissimilarity measure.
* @param k the number of clusters.
* @param maxNeighbor the maximum number of neighbors examined during a random search of local minima.
* @param numLocal the number of local minima to search for.
*/
public CLARANS(T[] data, Distance distance, int k, int maxNeighbor, int numLocal) {
if (maxNeighbor <= 0) {
throw new IllegalArgumentException("Invalid maxNeighbor: " + maxNeighbor);
}
if (numLocal <= 0) {
throw new IllegalArgumentException("Invalid numLocal: " + numLocal);
}
int n = data.length;
if (k >= n) {
throw new IllegalArgumentException("Too large k: " + k);
}
if (maxNeighbor > n) {
throw new IllegalArgumentException("Too large maxNeighbor: " + maxNeighbor);
}
int minmax = 100;
if (k * (n - k) < minmax) {
minmax = k * (n - k);
}
if (maxNeighbor < minmax) {
maxNeighbor = minmax;
}
this.k = k;
this.distance = distance;
this.numLocal = numLocal;
this.maxNeighbor = maxNeighbor;
List tasks = new ArrayList<>();
for (int i = 0; i < numLocal; i++) {
tasks.add(new CLARANSTask(data));
}
try {
MulticoreExecutor.run(tasks);
} catch (Exception e) {
System.out.println("Failed to run CLARANS on multi-core:"+e);
for (CLARANSTask task : tasks) {
task.call();
}
}
distortion = Double.POSITIVE_INFINITY;
for (CLARANSTask task : tasks) {
if (task.distortion < distortion) {
distortion = task.distortion;
medoids = task.medoids;
y = task.y;
}
}
size = new int[k];
for (int i = 0; i < n; i++) {
size[y[i]]++;
}
}
/**
* Adapter for running one local of CLARANS in thread pool.
*/
class CLARANSTask implements Callable {
final T[] data;
double distortion;
T[] medoids;
int[] y;
CLARANSTask(T[] data) {
this.data = data;
}
@Override
@SuppressWarnings("unchecked")
public CLARANSTask call() {
int n = data.length;
medoids = (T[]) java.lang.reflect.Array.newInstance(data.getClass().getComponentType(), k);
T[] newMedoids = medoids.clone();
y = new int[n];
int[] newY = new int[n];
double[] d = new double[n];
double[] newD = new double[n];
distortion = seed(distance, data, medoids, y, d);
System.arraycopy(medoids, 0, newMedoids, 0, k);
System.arraycopy(y, 0, newY, 0, n);
System.arraycopy(d, 0, newD, 0, n);
for (int neighborCount = 1; neighborCount <= maxNeighbor; neighborCount++) {
double randomNeighborDistortion = getRandomNeighbor(data, newMedoids, newY, newD);
if (randomNeighborDistortion < distortion) {
neighborCount = 0;
distortion = randomNeighborDistortion;
System.arraycopy(newMedoids, 0, medoids, 0, k);
System.arraycopy(newY, 0, y, 0, n);
System.arraycopy(newD, 0, d, 0, n);
} else {
System.arraycopy(medoids, 0, newMedoids, 0, k);
System.arraycopy(y, 0, newY, 0, n);
System.arraycopy(d, 0, newD, 0, n);
}
}
return this;
}
}
/**
* Generate a random neighbor which differs in only one medoid with current clusters.
*/
private double getRandomNeighbor(T[] data, T[] medoids, int[] y, double[] d) {
int n = data.length;
int index = Math.randomInt(k);
T medoid = null;
boolean dup;
do {
dup = false;
medoid = data[Math.randomInt(n)];
for (int i = 0; i < k; i++) {
if (medoid == medoids[i]) {
dup = true;
break;
}
}
} while (dup);
medoids[index] = medoid;
for (int i = 0; i < n; i++) {
double dist = distance.d(data[i], medoid);
if (d[i] > dist) {
y[i] = index;
d[i] = dist;
} else if (y[i] == index) {
d[i] = dist;
y[i] = index;
for (int j = 0; j < k; j++) {
if (j != index) {
dist = distance.d(data[i], medoids[j]);
if (d[i] > dist) {
y[i] = j;
d[i] = dist;
}
}
}
}
}
return Math.sum(d);
}
/**
* Returns the number of local minima to search for.
*/
public int getNumLocalMinima() {
return numLocal;
}
/**
* Returns the maximum number of neighbors examined during a search of local minima.
*/
public int getMaxNeighbor() {
return maxNeighbor;
}
/**
* Returns the distortion.
*/
public double distortion() {
return distortion;
}
/**
* Returns the medoids.
*/
public T[] medoids() {
return medoids;
}
/**
* Cluster a new instance.
* @param x a new instance.
* @return the cluster label, which is the index of nearest medoid.
*/
@Override
public int predict(T x) {
double minDist = Double.MAX_VALUE;
int bestCluster = 0;
for (int i = 0; i < k; i++) {
double dist = distance.d(x, medoids[i]);
if (dist < minDist) {
minDist = dist;
bestCluster = i;
}
}
return bestCluster;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(String.format("CLARANS distortion: %.5f%n", distortion));
sb.append(String.format("Clusters of %d data points:%n", y.length));
for (int i = 0; i < k; i++) {
int r = (int) Math.round(1000.0 * size[i] / y.length);
sb.append(String.format("%3d\t%5d (%2d.%1d%%)%n", i, size[i], r / 10, r % 10));
}
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy