All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.clustering.linkage.Linkage Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.clustering.linkage;

/**
 * A measure of dissimilarity between clusters (i.e. sets of observations).
 * 
 * 

References

*
    *
  1. Anil K. Jain, Richard C. Dubes. Algorithms for clustering data. 1988.
  2. *
* * @see smile.clustering.HierarchicalClustering * * @author Haifeng Li */ public abstract class Linkage { /** The data size. */ int size; /** * Linearized proximity matrix to store the pair-wise distance measure * as dissimilarity between clusters. To save space, we only need the * lower half of matrix. And we use float instead of double to save * more space, which also help speed performance. During the * clustering, this matrix will be updated to reflect the dissimilarity * of merged clusters. */ float[] proximity; /** Initialize the linkage with the lower triangular proximity matrix. */ void init(double[][] proximity) { size = proximity.length; this.proximity = new float[size * (size+1) / 2]; // row wise /* for (int i = 0, k = 0; i < size; i++) { double[] pi = proximity[i]; for (int j = 0; j <= i; j++, k++) { this.proximity[k] = (float) pi[j]; } } */ // column wise for (int j = 0, k = 0; j < size; j++) { for (int i = j; i < size; i++, k++) { this.proximity[k] = (float) proximity[i][j]; } } } int index(int i, int j) { // row wise // return i > j ? i*(i+1)/2 + j : j*(j+1)/2 + i; // column wise return i > j ? proximity.length - (size-j)*(size-j+1)/2 + i - j : proximity.length - (size-i)*(size-i+1)/2 + j - i; } /** Returns the proximity matrix size. */ public int size() { return size; } /** * Returns the distance/dissimilarity between two clusters/objects, which * are indexed by integers. */ public float d(int i, int j) { return proximity[index(i, j)]; } /** * Merge two clusters into one and update the proximity matrix. * @param i cluster id. * @param j cluster id. */ public abstract void merge(int i, int j); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy