smile.data.AttributeDataset Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.data;
import smile.math.Math;
import java.util.Date;
import java.util.HashSet;
import java.util.stream.IntStream;
/**
* A dataset of fixed number of attributes. All attribute values are stored as
* double even if the attribute may be nominal, ordinal, string, or date.
* The dataset is stored row-wise internally, which is fast for frequently
* accessing instances of dataset.
*
* @author Haifeng Li
*/
public class AttributeDataset extends Dataset {
/**
* The list of attributes.
*/
private Attribute[] attributes;
public class Row extends Datum {
/**
* Constructor.
* @param x the datum.
*/
public Row(double[] x) {
super(x);
}
/**
* Constructor.
* @param x the datum.
* @param y the class label or real-valued response.
*/
public Row(double[] x, double y) {
super(x, y);
}
/**
* Constructor.
* @param x the datum.
* @param y the class label or real-valued response.
* @param weight the weight of datum. The particular meaning of weight
* depends on applications and machine learning algorithms. Although there
* are on explicit requirements on the weights, in general, they should be
* positive.
*/
public Row(double[] x, double y, double weight) {
super(x, y, weight);
}
/** Returns the class label in string format. */
public String label() {
if (response.getType() != Attribute.Type.NOMINAL) {
throw new IllegalStateException("The response is not of nominal type");
}
return response.toString(y);
}
/**
* Returns an element value in string format.
* @param i the element index.
*/
public String string(int i) {
return attributes[i].toString(x[i]);
}
/**
* Returns a date element.
* @param i the element index.
*/
public Date date(int i) {
if (attributes[i].getType() != Attribute.Type.DATE) {
throw new IllegalStateException("Attribute is not of date type");
}
return ((DateAttribute) attributes[i]).toDate(x[i]);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
// Header
if (name != null) {
sb.append('\t');
}
if (response != null) {
sb.append(response.getName());
}
int p = attributes.length;
for (int j = 0; j < p; j++) {
sb.append('\t');
sb.append(attributes[j].getName());
}
sb.append(System.getProperty("line.separator"));
// Data
if (name != null) {
sb.append(name);
sb.append('\t');
}
if (response != null) {
if (response.getType() == Attribute.Type.NUMERIC)
sb.append(String.format("%1.4f", y));
else
sb.append(response.toString(y));
}
for (int j = 0; j < p; j++) {
sb.append('\t');
Attribute attr = attributes[j];
if (attr.getType() == Attribute.Type.NUMERIC)
sb.append(String.format("%1.4f", x[j]));
else
sb.append(attr.toString(x[j]));
}
return sb.toString();
}
}
/**
* Constructor.
* @param name the name of dataset.
* @param attributes the list of attributes in this dataset.
*/
public AttributeDataset(String name, Attribute[] attributes) {
super(name);
this.attributes = attributes;
}
/**
* Constructor.
* @param name the name of dataset.
* @param attributes the list of attributes in this dataset.
* @param response the attribute of response variable.
*/
public AttributeDataset(String name, Attribute[] attributes, Attribute response) {
super(name, response);
this.attributes = attributes;
}
/**
* Constructor.
* @param name the name of dataset.
* @param x the data in this dataset.
* @param y the response data.
*/
public AttributeDataset(String name, double[][] x, double[] y) {
this(name, IntStream.range(0, x[0].length).mapToObj(i -> new NumericAttribute("Var " + (i + 1))).toArray(NumericAttribute[]::new),
x, new NumericAttribute("response"), y);
}
/**
* Constructor.
* @param name the name of dataset.
* @param attributes the list of attributes in this dataset.
* @param x the data in this dataset.
* @param response the attribute of response variable.
* @param y the response data.
*/
public AttributeDataset(String name, Attribute[] attributes, double[][] x, Attribute response, double[] y) {
this(name, attributes, response);
if (x.length != y.length) {
throw new IllegalArgumentException(String.format("The sizes of X and Y don't match: %d != %d", x.length, y.length));
}
for (int i = 0; i < x.length; i++) {
add(x[i], y[i]);
}
}
/**
* Returns the list of attributes in this dataset.
*/
public Attribute[] attributes() {
return attributes;
}
/** Returns the array of data items. */
public double[][] x() {
double[][] x = new double[size()][];
toArray(x);
return x;
}
@Override
public Datum add(Datum x) {
if (!(x instanceof Row)) {
throw new IllegalArgumentException("The added Datum is not of type AttributeDataset.Row");
}
return super.add(x);
}
/**
* Add a datum item into the dataset.
* @param x a datum item.
* @return the added datum item.
*/
public Row add(Row x) {
data.add(x);
return x;
}
@Override
public Row add(double[] x) {
return add(new Row(x));
}
@Override
public Row add(double[] x, int y) {
if (response == null) {
throw new IllegalArgumentException(DATASET_HAS_NO_RESPONSE);
}
if (response.getType() != Attribute.Type.NOMINAL) {
throw new IllegalArgumentException(RESPONSE_NOT_NOMINAL);
}
return add(new Row(x, y));
}
@Override
public Row add(double[] x, int y, double weight) {
if (response == null) {
throw new IllegalArgumentException(DATASET_HAS_NO_RESPONSE);
}
if (response.getType() != Attribute.Type.NOMINAL) {
throw new IllegalArgumentException(RESPONSE_NOT_NOMINAL);
}
return add(new Row(x, y, weight));
}
@Override
public Row add(double[] x, double y) {
if (response == null) {
throw new IllegalArgumentException(DATASET_HAS_NO_RESPONSE);
}
return add(new Row(x, y));
}
@Override
public Row add(double[] x, double y, double weight) {
if (response == null) {
throw new IllegalArgumentException(DATASET_HAS_NO_RESPONSE);
}
return add(new Row(x, y, weight));
}
@Override
public String toString() {
int n = 10;
String s = toString(0, n);
if (size() <= n) return s;
else return s + "\n" + (size() - n) + " more rows...";
}
/** returns the first few rows. */
public AttributeDataset head(int n) {
return range(0, n);
}
/** Returns the last few rows. */
public AttributeDataset tail(int n) {
return range(size() - n, size());
}
/** Returns the rows in the given range [from, to). */
public AttributeDataset range(int from, int to) {
AttributeDataset sub = new AttributeDataset(name+'['+from+", "+to+']', attributes, response);
sub.description = description;
for (int i = from; i < to; i++) {
sub.add(get(i));
}
return sub;
}
/**
* Stringify dataset.
* @param from starting row (inclusive)
* @param to ending row (exclusive)
*/
public String toString(int from, int to) {
StringBuilder sb = new StringBuilder();
if (name != null && !name.isEmpty()) {
sb.append(name);
sb.append(System.getProperty("line.separator"));
}
if (description != null && !description.isEmpty()) {
sb.append(description);
sb.append(System.getProperty("line.separator"));
}
sb.append('\t');
if (response != null) {
sb.append(response.getName());
}
int p = attributes.length;
for (int j = 0; j < p; j++) {
sb.append('\t');
sb.append(attributes[j].getName());
}
int end = Math.min(data.size(), to);
for (int i = from; i < end; i++) {
sb.append(System.getProperty("line.separator"));
Datum datum = data.get(i);
if (datum.name != null) {
sb.append(datum.name);
} else {
sb.append('[');
sb.append(i + 1);
sb.append(']');
}
sb.append('\t');
if (response != null) {
double y = data.get(i).y;
if (response.getType() == Attribute.Type.NUMERIC)
sb.append(String.format("%1.4f", y));
else
sb.append(response.toString(y));
}
double[] x = datum.x;
for (int j = 0; j < p; j++) {
sb.append('\t');
Attribute attr = attributes[j];
if (attr.getType() == Attribute.Type.NUMERIC)
sb.append(String.format("%1.4f", x[j]));
else
sb.append(attr.toString(x[j]));
}
}
return sb.toString();
}
/** Returns a column. */
public AttributeVector column(int i) {
if (i < 0 || i >= attributes.length) {
throw new IllegalArgumentException("Invalid column index: " + i);
}
double[] vector = new double[size()];
for (int j = 0; j < vector.length; j++) {
vector[j] = data.get(j).x[i];
}
return new AttributeVector(attributes[i], vector);
}
/** Returns a column. */
public AttributeVector column(String col) {
int i = -1;
for (int j = 0; j < attributes.length; j++) {
if (attributes[j].getName().equals(col)) {
i = j;
break;
}
}
if (i == -1) {
throw new IllegalArgumentException("Invalid column name: " + col);
}
return column(i);
}
/** Returns a dataset with selected columns. */
public AttributeDataset columns(String... cols) {
Attribute[] attrs = new Attribute[cols.length];
int[] index = new int[cols.length];
for (int k = 0; k < cols.length; k++) {
for (int j = 0; j < attributes.length; j++) {
if (attributes[j].getName().equals(cols[k])) {
index[k] = j;
attrs[k] = attributes[j];
break;
}
}
if (attrs[k] == null) {
throw new IllegalArgumentException("Unknown column: " + cols[k]);
}
}
AttributeDataset sub = new AttributeDataset(name, attrs, response);
for (Datum datum : data) {
double[] x = new double[index.length];
for (int i = 0; i < x.length; i++) {
x[i] = datum.x[index[i]];
}
Row row = response == null ? sub.add(x) : sub.add(x, datum.y);
row.name = datum.name;
row.weight = datum.weight;
row.description = datum.description;
row.timestamp = datum.timestamp;
}
return sub;
}
/** Returns a new dataset without given columns. */
public AttributeDataset remove(String... cols) {
HashSet remains = new HashSet<>();
for (Attribute attr : attributes) {
remains.add(attr.getName());
}
for (String col : cols) {
remains.remove(col);
}
Attribute[] attrs = new Attribute[remains.size()];
int[] index = new int[remains.size()];
for (int j = 0, i = 0; j < attributes.length; j++) {
if (remains.contains(attributes[j].getName())) {
index[i] = j;
attrs[i] = attributes[j];
i++;
}
}
AttributeDataset sub = new AttributeDataset(name, attrs, response);
for (Datum datum : data) {
double[] x = new double[index.length];
for (int i = 0; i < x.length; i++) {
x[i] = datum.x[index[i]];
}
Row row = response == null ? sub.add(x) : sub.add(x, datum.y);
row.name = datum.name;
row.weight = datum.weight;
row.description = datum.description;
row.timestamp = datum.timestamp;
}
return sub;
}
/** Returns statistic summary. */
public AttributeDataset summary() {
Attribute[] attr = {
new NumericAttribute("min"),
new NumericAttribute("q1"),
new NumericAttribute("median"),
new NumericAttribute("mean"),
new NumericAttribute("q3"),
new NumericAttribute("max"),
};
AttributeDataset stat = new AttributeDataset(name + " Summary", attr);
for (int i = 0; i < attributes.length; i++) {
double[] x = column(i).vector();
double[] s = new double[attr.length];
s[0] = Math.min(x);
s[1] = Math.q1(x);
s[2] = Math.median(x);
s[3] = Math.mean(x);
s[4] = Math.q3(x);
s[5] = Math.max(x);
Row datum = new Row(s);
datum.name = attributes[i].getName();
datum.description = attributes[i].getDescription();
stat.add(datum);
}
return stat;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy