smile.regression.NeuralNetwork Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
* Modifications copyright (C) 2017 Sam Erickson
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.regression;
import smile.math.Math;
import java.io.Serializable;
/**
* Multilayer perceptron neural network for regression.
* An MLP consists of several layers of nodes, interconnected through weighted
* acyclic arcs from each preceding layer to the following, without lateral or
* feedback connections. Each node calculates a transformed weighted linear
* combination of its inputs (output activations from the preceding layer), with
* one of the weights acting as a trainable bias connected to a constant input.
* The transformation, called activation function, is a bounded non-decreasing
* (non-linear) function, such as the sigmoid functions (ranges from 0 to 1).
* Another popular activation function is hyperbolic tangent which is actually
* equivalent to the sigmoid function in shape but ranges from -1 to 1.
*
* @author Sam Erickson
*/
public class NeuralNetwork implements OnlineRegression {
private static final long serialVersionUID = 1L;
public enum ActivationFunction {
/**
* Logistic sigmoid activation function (default): sigma(v)=1/(1+exp(-v))
*/
LOGISTIC_SIGMOID,
/**
* Hyperbolic tangent activation function: f(v)=tanh(v)
*/
TANH
}
private class Layer implements Serializable {
private static final long serialVersionUID = 1L;
/**
* number of units in this layer
*/
int units;
/**
* output of ith unit
*/
double[] output;
/**
* error term of ith unit
*/
double[] error;
/**
* connection weights to ith unit from previous layer
*/
double[][] weight;
/**
* last weight changes for momentum
*/
double[][] delta;
}
/**
* The type of activation function in output layer.
*/
private ActivationFunction activationFunction = ActivationFunction.LOGISTIC_SIGMOID;
/**
* The dimensionality of data.
*/
private int p;
/**
* layers of this net
*/
private Layer[] net;
/**
* input layer
*/
private Layer inputLayer;
/**
* output layer
*/
private Layer outputLayer;
/**
* learning rate
*/
private double eta = 0.1;
/**
* momentum factor
*/
private double alpha = 0.0;
/**
* weight decay factor, which is also a regularization term.
*/
private double lambda = 0.0;
/**
* Trainer for neural networks.
*/
public static class Trainer extends RegressionTrainer {
/**
* The type of activation function in output layer.
*/
private ActivationFunction activationFunction = ActivationFunction.LOGISTIC_SIGMOID;
/**
* The number of units in each layer.
*/
private int[] numUnits;
/**
* learning rate
*/
private double eta = 0.1;
/**
* momentum factor
*/
private double alpha = 0.0;
/**
* weight decay factor, which is also a regularization term.
*/
private double lambda = 0.0;
/**
* The number of epochs of stochastic learning.
*/
private int epochs = 25;
/**
* Constructor. The default activation function is the logistic sigmoid function.
*
* @param numUnits the number of units in each layer.
*/
public Trainer(int... numUnits) {
this(ActivationFunction.LOGISTIC_SIGMOID, numUnits);
}
/**
* Constructor.
*
* @param activation the activation function of output layer.
* @param numUnits the number of units in each layer.
*/
public Trainer(ActivationFunction activation, int... numUnits) {
int numLayers = numUnits.length;
if (numLayers < 2) {
throw new IllegalArgumentException("Invalid number of layers: " + numLayers);
}
for (int i = 0; i < numLayers; i++) {
if (numUnits[i] < 1) {
throw new IllegalArgumentException(String.format("Invalid number of units of layer %d: %d", i + 1, numUnits[i]));
}
}
if (numUnits[numLayers - 1]!=1){
throw new IllegalArgumentException(String.format("Invalid number of units in output layer %d",numUnits[numLayers - 1]));
}
this.activationFunction = activation;
this.numUnits = numUnits;
}
/**
* Sets the learning rate.
* @param eta the learning rate.
*/
public Trainer setLearningRate(double eta) {
if (eta <= 0) {
throw new IllegalArgumentException("Invalid learning rate: " + eta);
}
this.eta = eta;
return this;
}
/**
* Sets the momentum factor.
* @param alpha the momentum factor.
*/
public Trainer setMomentum(double alpha) {
if (alpha < 0.0 || alpha >= 1.0) {
throw new IllegalArgumentException("Invalid momentum factor: " + alpha);
}
this.alpha = alpha;
return this;
}
/**
* Sets the weight decay factor. After each weight update, every weight
* is simply ''decayed'' or shrunk according w = w * (1 - eta * lambda).
* @param lambda the weight decay for regularization.
*/
public Trainer setWeightDecay(double lambda) {
if (lambda < 0.0 || lambda > 0.1) {
throw new IllegalArgumentException("Invalid weight decay factor: " + lambda);
}
this.lambda = lambda;
return this;
}
/**
* Sets the number of epochs of stochastic learning.
* @param epochs the number of epochs of stochastic learning.
*/
public Trainer setNumEpochs(int epochs) {
if (epochs < 1) {
throw new IllegalArgumentException("Invalid numer of epochs of stochastic learning:" + epochs);
}
this.epochs = epochs;
return this;
}
@Override
public NeuralNetwork train(double[][] x, double[] y) {
NeuralNetwork net = new NeuralNetwork(activationFunction, numUnits);
net.setLearningRate(eta);
net.setMomentum(alpha);
net.setWeightDecay(lambda);
for (int i = 1; i <= epochs; i++) {
net.learn(x, y);
System.out.println("Neural network learns epoch "+i);
}
return net;
}
}
/**
* Constructor. The default activation function is the logistic sigmoid function.
*
* @param numUnits the number of units in each layer.
*/
public NeuralNetwork(int... numUnits) {
this(ActivationFunction.LOGISTIC_SIGMOID, numUnits);
}
/**
* Constructor.
*
* @param activation the activation function of output layer.
* @param numUnits the number of units in each layer.
*/
public NeuralNetwork(ActivationFunction activation, int... numUnits) {
this(activation,0.0001,0.9,numUnits);
}
/**
* Constructor.
*
* @param activation the activation function of output layer.
* @param numUnits the number of units in each layer.
*/
public NeuralNetwork(ActivationFunction activation, double alpha, double lambda, int... numUnits) {
int numLayers = numUnits.length;
if (numLayers < 2) {
throw new IllegalArgumentException("Invalid number of layers: " + numLayers);
}
for (int i = 0; i < numLayers; i++) {
if (numUnits[i] < 1) {
throw new IllegalArgumentException(String.format("Invalid number of units of layer %d: %d", i+1, numUnits[i]));
}
}
if (numUnits[numLayers - 1]!=1){
throw new IllegalArgumentException(String.format("Invalid number of units in output layer %d",numUnits[numLayers - 1]));
}
this.activationFunction = activation;
this.alpha = alpha;
this.lambda = lambda;
this.p = numUnits[0];
net = new Layer[numLayers];
for (int i = 0; i < numLayers; i++) {
net[i] = new Layer();
net[i].units = numUnits[i];
net[i].output = new double[numUnits[i] + 1];
net[i].error = new double[numUnits[i] + 1];
net[i].output[numUnits[i]] = 1.0;
}
inputLayer = net[0];
outputLayer = net[numLayers - 1];
// Initialize random weights.
for (int l = 1; l < numLayers; l++) {
net[l].weight = new double[numUnits[l]][numUnits[l - 1] + 1];
net[l].delta = new double[numUnits[l]][numUnits[l - 1] + 1];
double r = 1.0 / Math.sqrt(net[l - 1].units);
for (int i = 0; i < net[l].units; i++) {
for (int j = 0; j <= net[l - 1].units; j++) {
net[l].weight[i][j] = Math.random(-r, r);
}
}
}
}
/**
* Private constructor for clone purpose.
*/
private NeuralNetwork() {
}
@Override
public NeuralNetwork clone() {
NeuralNetwork copycat = new NeuralNetwork();
copycat.activationFunction = activationFunction;
copycat.p = p;
copycat.eta = eta;
copycat.alpha = alpha;
copycat.lambda = lambda;
int numLayers = net.length;
copycat.net = new Layer[numLayers];
for (int i = 0; i < numLayers; i++) {
copycat.net[i] = new Layer();
copycat.net[i].units = net[i].units;
copycat.net[i].output = net[i].output.clone();
copycat.net[i].error = net[i].error.clone();
if (i > 0) {
copycat.net[i].weight = Math.clone(net[i].weight);
copycat.net[i].delta = Math.clone(net[i].delta);
}
}
copycat.inputLayer = copycat.net[0];
copycat.outputLayer = copycat.net[numLayers - 1];
return copycat;
}
/**
* Sets the learning rate.
* @param eta the learning rate.
*/
public void setLearningRate(double eta) {
if (eta <= 0) {
throw new IllegalArgumentException("Invalid learning rate: " + eta);
}
this.eta = eta;
}
/**
* Returns the learning rate.
*/
public double getLearningRate() {
return eta;
}
/**
* Sets the momentum factor.
* @param alpha the momentum factor.
*/
public void setMomentum(double alpha) {
if (alpha < 0.0 || alpha >= 1.0) {
throw new IllegalArgumentException("Invalid momentum factor: " + alpha);
}
this.alpha = alpha;
}
/**
* Returns the momentum factor.
*/
public double getMomentum() {
return alpha;
}
/**
* Sets the weight decay factor. After each weight update, every weight
* is simply ''decayed'' or shrunk according w = w * (1 - eta * lambda).
* @param lambda the weight decay for regularization.
*/
public void setWeightDecay(double lambda) {
if (lambda < 0.0 || lambda > 0.1) {
throw new IllegalArgumentException("Invalid weight decay factor: " + lambda);
}
this.lambda = lambda;
}
/**
* Returns the weight decay factor.
*/
public double getWeightDecay() {
return lambda;
}
/**
* Returns the weights of a layer.
* @param layer the layer of netural network, 0 for input layer.
*/
public double[][] getWeight(int layer) {
return net[layer].weight;
}
/**
* Sets the input vector into the input layer.
* @param x the input vector.
*/
private void setInput(double[] x) {
if (x.length != inputLayer.units) {
throw new IllegalArgumentException(String.format("Invalid input vector size: %d, expected: %d", x.length, inputLayer.units));
}
System.arraycopy(x, 0, inputLayer.output, 0, inputLayer.units);
}
/**
* Propagates signals from a lower layer to the next upper layer.
* @param lower the lower layer where signals are from.
* @param upper the upper layer where signals are propagated to.
*/
private void propagate(Layer lower, Layer upper) {
for (int i = 0; i < upper.units; i++) {
double sum = 0.0;
for (int j = 0; j <= lower.units; j++) {
sum += upper.weight[i][j] * lower.output[j];
}
if (upper == outputLayer) {
upper.output[i] = sum;
}
else {
if (activationFunction == ActivationFunction.LOGISTIC_SIGMOID) {
upper.output[i] = Math.logistic(sum);
}
else if (activationFunction== ActivationFunction.TANH){
upper.output[i]=(2*Math.logistic(2*sum))-1;
}
}
}
}
/**
* Propagates the signals through the neural network.
*/
private void propagate() {
for (int l = 0; l < net.length - 1; l++) {
propagate(net[l], net[l + 1]);
}
}
/**
* Compute the network output error.
* @param output the desired output.
*/
private double computeOutputError(double output) {
return computeOutputError(output, outputLayer.error);
}
/**
* Compute the network output error.
* @param output the desired output.
* @param gradient the array to store gradient on output.
* @return the error defined by loss function.
*/
private double computeOutputError(double output, double[] gradient) {
double error = 0.0;
double out = outputLayer.output[0];
double g = output - out;
error += (0.5*g * g);
gradient[0] = g;
return error;
}
/**
* Propagates the errors back from a upper layer to the next lower layer.
* @param upper the lower layer where errors are from.
* @param lower the upper layer where errors are propagated back to.
*/
private void backpropagate(Layer upper, Layer lower) {
for (int i = 0; i <= lower.units; i++) {
double out = lower.output[i];
double err = 0;
for (int j = 0; j < upper.units; j++) {
err += upper.weight[j][i] * upper.error[j];
}
if (activationFunction== ActivationFunction.LOGISTIC_SIGMOID) {
lower.error[i] = out * (1.0 - out) * err;
}
else if (activationFunction== ActivationFunction.TANH){
lower.error[i] = (1-(out*out))*err;
}
}
}
/**
* Propagates the errors back through the network.
*/
private void backpropagate() {
for (int l = net.length; --l > 0;) {
backpropagate(net[l], net[l - 1]);
}
}
/**
* Adjust network weights by back-propagation algorithm.
*/
private void adjustWeights() {
for (int l = 1; l < net.length; l++) {
for (int i = 0; i < net[l].units; i++) {
for (int j = 0; j <= net[l - 1].units; j++) {
double out = net[l - 1].output[j];
double err = net[l].error[i];
double delta = (1 - alpha) * eta * err * out + alpha * net[l].delta[i][j];
net[l].delta[i][j] = delta;
net[l].weight[i][j] += delta;
if (lambda != 0.0 && j < net[l-1].units) {
net[l].weight[i][j] *= (1.0 - eta * lambda);
}
}
}
}
}
@Override
public double predict(double[] x) {
setInput(x);
propagate();
return outputLayer.output[0];
}
/**
* Update the neural network with given instance and associated target value.
* Note that this method is NOT multi-thread safe.
* @param x the training instance.
* @param y the target value.
* @param weight a positive weight value associated with the training instance.
* @return the weighted training error before back-propagation.
*/
public double learn(double[] x, double y, double weight) {
setInput(x);
propagate();
double err = weight * computeOutputError(y);
if (weight != 1.0) {
outputLayer.error[0] *= weight;
}
backpropagate();
adjustWeights();
return err;
}
@Override
public void learn(double[] x, double y) {
learn(x, y, 1.0);
}
/**
* Trains the neural network with the given dataset for one epoch by
* stochastic gradient descent.
*
* @param x training instances.
* @param y training labels in [0, k), where k is the number of classes.
*/
public void learn(double[][] x, double[] y) {
int n = x.length;
int[] index = Math.permutate(n);
for (int i = 0; i < n; i++) {
learn(x[index[i]], y[index[i]]);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy