All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.sort.QuickSelect Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.sort;

/**
 * Selection is asking for the k th smallest element out of n elements.
 * This class implements the fastest general method for selection based on
 * partitioning, exactly as done in the Quicksort algorithm.
 * 

* The most common use of selection is in the statistical characterization of * a set of data. One often wants to know the median element (quantile p = 1/2) * in an array or the top and bottom quartile elements (quantile p = 1/4, 3/4). * * @author Haifeng Li */ public class QuickSelect { /** Utility classes should not have public constructors. */ private QuickSelect() { } /** * Given k in [0, n-1], returns an array value from arr such that k array * values are less than or equal to the one returned. The input array will * be rearranged to have this value in location arr[k], with all smaller * elements moved to arr[0, k-1] (in arbitrary order) and all larger elements * in arr[k+1, n-1] (also in arbitrary order). */ public static int select(int[] arr, int k) { int n = arr.length; int l = 0; int ir = n - 1; int a; int i, j, mid; for (;;) { if (ir <= l + 1) { if (ir == l + 1 && arr[ir] < arr[l]) { SortUtils.swap(arr, l, ir); } return arr[k]; } else { mid = (l + ir) >> 1; SortUtils.swap(arr, mid, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; if (j >= k) { ir = j - 1; } if (j <= k) { l = i; } } } } /** * Given k in [0, n-1], returns an array value from arr such that k array * values are less than or equal to the one returned. The input array will * be rearranged to have this value in location arr[k], with all smaller * elements moved to arr[0, k-1] (in arbitrary order) and all larger elements * in arr[k+1, n-1] (also in arbitrary order). */ public static float select(float[] arr, int k) { int n = arr.length; int l = 0; int ir = n - 1; float a; int i, j, mid; for (;;) { if (ir <= l + 1) { if (ir == l + 1 && arr[ir] < arr[l]) { SortUtils.swap(arr, l, ir); } return arr[k]; } else { mid = (l + ir) >> 1; SortUtils.swap(arr, mid, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; if (j >= k) { ir = j - 1; } if (j <= k) { l = i; } } } } /** * Given k in [0, n-1], returns an array value from arr such that k array * values are less than or equal to the one returned. The input array will * be rearranged to have this value in location arr[k], with all smaller * elements moved to arr[0, k-1] (in arbitrary order) and all larger elements * in arr[k+1, n-1] (also in arbitrary order). */ public static double select(double[] arr, int k) { int n = arr.length; int l = 0; int ir = n - 1; double a; int i, j, mid; for (;;) { if (ir <= l + 1) { if (ir == l + 1 && arr[ir] < arr[l]) { SortUtils.swap(arr, l, ir); } return arr[k]; } else { mid = (l + ir) >> 1; SortUtils.swap(arr, mid, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; if (j >= k) { ir = j - 1; } if (j <= k) { l = i; } } } } /** * Given k in [0, n-1], returns an array value from arr such that k array * values are less than or equal to the one returned. The input array will * be rearranged to have this value in location arr[k], with all smaller * elements moved to arr[0, k-1] (in arbitrary order) and all larger elements * in arr[k+1, n-1] (also in arbitrary order). */ public static > T select(T[] arr, int k) { int n = arr.length; int l = 0; int ir = n - 1; T a; int i, j, mid; for (;;) { if (ir <= l + 1) { if (ir == l + 1 && arr[ir].compareTo(arr[l]) < 0) { SortUtils.swap(arr, l, ir); } return arr[k]; } else { mid = (l + ir) >> 1; SortUtils.swap(arr, mid, l + 1); if (arr[l].compareTo(arr[ir]) > 0) { SortUtils.swap(arr, l, ir); } if (arr[l + 1].compareTo(arr[ir]) > 0) { SortUtils.swap(arr, l + 1, ir); } if (arr[l].compareTo(arr[l + 1]) > 0) { SortUtils.swap(arr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; for (;;) { do { i++; } while (arr[i].compareTo(a) < 0); do { j--; } while (arr[j].compareTo(a) > 0); if (j < i) { break; } SortUtils.swap(arr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; if (j >= k) { ir = j - 1; } if (j <= k) { l = i; } } } } /** * Find the median of an array of type integer. */ public static int median(int[] a) { int k = a.length / 2; return select(a, k); } /** * Find the median of an array of type float. */ public static float median(float[] a) { int k = a.length / 2; return select(a, k); } /** * Find the median of an array of type double. */ public static double median(double[] a) { int k = a.length / 2; return select(a, k); } /** * Find the median of an array of type double. */ public static > T median(T[] a) { int k = a.length / 2; return select(a, k); } /** * Find the first quantile (p = 1/4) of an array of type integer. */ public static int q1(int[] a) { int k = a.length / 4; return select(a, k); } /** * Find the first quantile (p = 1/4) of an array of type float. */ public static float q1(float[] a) { int k = a.length / 4; return select(a, k); } /** * Find the first quantile (p = 1/4) of an array of type double. */ public static double q1(double[] a) { int k = a.length / 4; return select(a, k); } /** * Find the first quantile (p = 1/4) of an array of type double. */ public static > T q1(T[] a) { int k = a.length / 4; return select(a, k); } /** * Find the third quantile (p = 3/4) of an array of type integer. */ public static int q3(int[] a) { int k = 3 * a.length / 4; return select(a, k); } /** * Find the third quantile (p = 3/4) of an array of type float. */ public static float q3(float[] a) { int k = 3 * a.length / 4; return select(a, k); } /** * Find the third quantile (p = 3/4) of an array of type double. */ public static double q3(double[] a) { int k = 3 * a.length / 4; return select(a, k); } /** * Find the third quantile (p = 3/4) of an array of type double. */ public static > T q3(T[] a) { int k = 3 * a.length / 4; return select(a, k); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy