
com.actelion.research.chem.coords.InventorFragment Maven / Gradle / Ivy
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @author Thomas Sander
*/
package com.actelion.research.chem.coords;
import com.actelion.research.chem.StereoMolecule;
import java.util.ArrayList;
import java.util.Arrays;
public class InventorFragment {
private static final double cCollisionLimitBondRotation = 0.8;
private static final double cCollisionLimitAtomMovement = 0.5;
private final int CIRCULAR_BINS = 36;
protected int[] mGlobalAtom;
protected int[] mGlobalBond;
protected int[] mGlobalToLocalAtom;
protected int[] mPriority;
protected double[] mAtomX;
protected double[] mAtomY;
protected boolean mKeepMarkedAtoms;
private StereoMolecule mMol;
private boolean mMinMaxAvail;
private double mMinX;
private double mMinY;
private double mMaxX;
private double mMaxY;
private double mCollisionPanalty;
private int[][] mFlipList;
private int[] mSortedAtom;
protected InventorFragment(StereoMolecule mol, int atoms, boolean keepMarkedAtoms) {
mMol = mol;
mKeepMarkedAtoms = keepMarkedAtoms;
mGlobalAtom = new int[atoms];
mPriority = new int[atoms];
mAtomX = new double[atoms];
mAtomY = new double[atoms];
}
protected InventorFragment(InventorFragment f) {
mMol = f.mMol;
mKeepMarkedAtoms = f.mKeepMarkedAtoms;
mGlobalAtom = new int[f.size()];
mPriority = new int[f.size()];
mAtomX = new double[f.size()];
mAtomY = new double[f.size()];
for (int i=0; ithe bond atom that lies on the larger side of the bond
// [1]->the bond atom on the smaller side of the bond
// [2...n]->all other atoms on the smaller side of the bond.
// These are the ones getting flipped on the mirror
// line defined by the bond.
if (mFlipList == null)
mFlipList = new int[mMol.getAllBonds()][];
if (mFlipList[bond] == null) {
int[] graphAtom = new int[mGlobalAtom.length];
boolean[] isOnSide = new boolean[mMol.getAllAtoms()];
int atom1 = mMol.getBondAtom(0, bond);
int atom2 = mMol.getBondAtom(1, bond);
graphAtom[0] = atom1;
isOnSide[atom1] = true;
int current = 0;
int highest = 0;
while (current <= highest) {
for (int i=0; i mGlobalAtom.length/2);
// if we retain core atoms and the smaller side contains core atoms, then flip the larger side
if (mKeepMarkedAtoms) {
boolean coreOnSide = false;
boolean coreOffSide = false;
for (int i = 0; i< mGlobalAtom.length; i++) {
int atom = mGlobalAtom[i];
if (mMol.isMarkedAtom(atom) && atom != atom1 && atom != atom2) {
if (isOnSide[mGlobalAtom[i]])
coreOnSide = true;
else
coreOffSide = true;
}
}
if (coreOnSide != coreOffSide)
flipOtherSide = coreOnSide;
}
int count = 2;
mFlipList[bond] = new int[flipOtherSide ? mGlobalAtom.length-highest : highest+2];
for (int i = 0; i< mGlobalAtom.length; i++) {
if (mGlobalAtom[i] == atom1)
mFlipList[bond][flipOtherSide ? 0 : 1] = i;
else if (mGlobalAtom[i] == atom2)
mFlipList[bond][flipOtherSide ? 1 : 0] = i;
else if (flipOtherSide ^ isOnSide[mGlobalAtom[i]])
mFlipList[bond][count++] = i;
}
}
double x = mAtomX[mFlipList[bond][0]];
double y = mAtomY[mFlipList[bond][0]];
double mirrorAngle = InventorAngle.getAngle(x, y, mAtomX[mFlipList[bond][1]],
mAtomY[mFlipList[bond][1]]);
for (int i=2; i=2) ? corner-2 : corner+2);
if (maxGain < gain) {
maxGain = gain;
maxCorner = corner;
}
}
double sumHeight = getHeight() + f.getHeight();
double sumWidth = 0.75 * (getWidth() + f.getWidth());
double maxHeight = Math.max(getHeight(), f.getHeight());
double maxWidth = 0.75 * Math.max(getWidth(), f.getWidth());
double bestCornerSize = Math.sqrt((sumHeight - maxGain) * (sumHeight - maxGain)
+ (sumWidth - 0.75 * maxGain) * (sumWidth - 0.75 * maxGain));
double toppedSize = Math.max(maxWidth, sumHeight);
double besideSize = Math.max(maxHeight, sumWidth);
if (bestCornerSize < toppedSize && bestCornerSize < besideSize) {
switch(maxCorner) {
case 0:
f.translate(mMaxX - f.mMinX - maxGain + 1.0, mMinY - f.mMaxY + maxGain - 1.0);
break;
case 1:
f.translate(mMaxX - f.mMinX - maxGain + 1.0, mMaxY - f.mMinY - maxGain + 1.0);
break;
case 2:
f.translate(mMinX - f.mMaxX + maxGain - 1.0, mMaxY - f.mMinY - maxGain + 1.0);
break;
case 3:
f.translate(mMinX - f.mMaxX + maxGain - 1.0, mMinY - f.mMaxY + maxGain - 1.0);
break;
}
}
else if (besideSize < toppedSize) {
f.translate(mMaxX - f.mMinX + 1.0, (mMaxY + mMinY - f.mMaxY - f.mMinY) / 2);
}
else {
f.translate((mMaxX + mMinX - f.mMaxX - f.mMinX) / 2, mMaxY - f.mMinY + 1.0);
}
}
private void calculateMinMax() {
if (mMinMaxAvail)
return;
mMinX = mAtomX[0];
mMaxX = mAtomX[0];
mMinY = mAtomY[0];
mMaxY = mAtomY[0];
for (int i = 0; i< mGlobalAtom.length; i++) {
double surplus = getAtomSurplus(i);
if (mMinX > mAtomX[i] - surplus)
mMinX = mAtomX[i] - surplus;
if (mMaxX < mAtomX[i] + surplus)
mMaxX = mAtomX[i] + surplus;
if (mMinY > mAtomY[i] - surplus)
mMinY = mAtomY[i] - surplus;
if (mMaxY < mAtomY[i] + surplus)
mMaxY = mAtomY[i] + surplus;
}
mMinMaxAvail = true;
}
private double getCornerDistance(int corner) {
double minDistance = 9999.0;
for (int atom = 0; atom< mGlobalAtom.length; atom++) {
double surplus = getAtomSurplus(atom);
double d = 0.0;
switch (corner) {
case 0: // top right
d = mMaxX - 0.5 * (mMaxX + mMinY + mAtomX[atom] - mAtomY[atom]);
break;
case 1: // bottom right
d = mMaxX - 0.5 * (mMaxX - mMaxY + mAtomX[atom] + mAtomY[atom]);
break;
case 2: // bottom left
d = 0.5 * (mMinX + mMaxY + mAtomX[atom] - mAtomY[atom]) - mMinX;
break;
case 3: // top left
d = 0.5 * (mMinX - mMinY + mAtomX[atom] + mAtomY[atom]) - mMinX;
break;
}
if (minDistance > d - surplus)
minDistance = d - surplus;
}
return minDistance;
}
private double getAtomSurplus(int atom) {
return (mMol.getAtomQueryFeatures(mGlobalAtom[atom]) != 0) ? 0.6
: (mMol.getAtomicNo(mGlobalAtom[atom]) != 6) ? 0.25 : 0.0;
}
protected ArrayList getCollisionList() {
mCollisionPanalty = 0.0;
ArrayList collisionList = new ArrayList();
for (int i = 1; i< mGlobalAtom.length; i++) {
for (int j=0; j atom)
fragmentBonds++;
// for (int j=connAtoms; j atom && isMember(mMol.getConnAtom(atom, j)))
// fragmentBonds++;
}
mGlobalBond = new int[fragmentBonds];
mGlobalToLocalAtom = new int[mMol.getAllAtoms()];
fragmentBonds = 0;
for (int i=0; i atom)
mGlobalBond[fragmentBonds++] = mMol.getConnBond(atom, j);
// for (int j=connAtoms; j atom && isMember(mMol.getConnAtom(atom, j)))
// mGlobalBond[fragmentBonds++] = mMol.getConnBond(atom, j);
}
}
protected void optimizeAtomCoordinates(int atom) {
double x = mAtomX[atom];
double y = mAtomY[atom];
InventorAngle[] collisionForce = new InventorAngle[4];
int forces = 0;
for (int i = 0; i< mGlobalBond.length; i++) {
if (forces >= 4)
break;
if (atom == mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]
|| atom == mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])])
continue;
double x1 = mAtomX[mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]];
double y1 = mAtomY[mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]];
double x2 = mAtomX[mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])]];
double y2 = mAtomY[mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])]];
double d1 = Math.sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y));
double d2 = Math.sqrt((x2-x)*(x2-x)+(y2-y)*(y2-y));
double bondLength = Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
if (d1 0) {
InventorAngle force = CoordinateInventor.getMeanAngle(collisionForce, forces);
mAtomX[atom] += force.mLength * Math.sin(force.mAngle);
mAtomY[atom] += force.mLength * Math.cos(force.mAngle);
}
}
/**
* @param x
* @param y
* @return angle
*/
protected double calculatePreferredAttachmentAngle(double x, double y, int neighbourAtomCount, double padding) {
if (size() == 1)
return 0;
final double BIN_ANGLE = 2.0 * Math.PI / CIRCULAR_BINS;
double neighbourRadius = padding
+ Math.sqrt(neighbourAtomCount); // assume a little large, because they neighbour exposes its wide side
double[] distance = new double[CIRCULAR_BINS];
for (int i = 0; i< mGlobalAtom.length; i++) {
double angle = InventorAngle.getAngle(x, y, mAtomX[i], mAtomY[i]);
int bin = correctBin((int)Math.round(angle * CIRCULAR_BINS / (2.0*Math.PI)));
double dx = x - mAtomX[i];
double dy = y - mAtomY[i];
double sd = dx*dx + dy*dy;
if (distance[bin] < sd)
distance[bin] = sd;
}
double maxDistance = -1;
int maxBin = -1;
for (int i=0; i= minDistance)
continue;
double localMinDistance = distance[bin];
// check, whether localMinDistance is compatible with adjacent bins and adapt, if needed
for (int i=1; i localMinDistance) {
minDistance = localMinDistance;
minBin = bin;
}
}
return Math.PI * 2 * minBin / CIRCULAR_BINS;
}
private int correctBin(int bin) {
return bin < 0 ? bin + CIRCULAR_BINS : bin >= CIRCULAR_BINS ? bin - CIRCULAR_BINS : bin;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy