
com.actelion.research.chem.reaction.SRSearcher Maven / Gradle / Ivy
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @author Thomas Sander
*/
package com.actelion.research.chem.reaction;
import com.actelion.research.chem.Molecule;
import com.actelion.research.chem.SSSearcher;
import com.actelion.research.chem.StereoMolecule;
import java.util.ArrayList;
import java.util.Arrays;
import static com.actelion.research.chem.SSSearcher.cCountModeRigorous;
import static com.actelion.research.chem.SSSearcher.cDefaultMatchMode;
/**
* The SRSearcher class handles reaction-sub-structure searches. Correctly, the class
* should be named SuperReactionSearcher, because it is rather a search for super reactions
* for a given query reaction. The query reaction may also be called transformation and
* may contain atom or bond based query features.
*/
public class SRSearcher {
private StereoMolecule mQueryReactantBuffer,mQueryProductBuffer,mReactantBuffer,mProductBuffer;
private StereoMolecule mQueryReactant,mQueryProduct,mReactant,mProduct;
private SSSearcher mReactantSearcher,mProductSearcher;
private boolean mQueryIsPreprocessed,mReactionIsPreprocessed;
private int mQueryMaxMapNo,mMaxMapNo;
private byte[] mQueryCode,mQueryCoords,mQueryMapping,mReactionCode,mReactionCoords,mReactionMapping;
private long[] mQueryReactantFFP,mQueryProductFFP,mReactantFFP,mProductFFP;
private int[] mQueryReactantToProductAtom,mQueryReactantToProductBond,mReactantToProductAtom,mReactantToProductBond;
private int[] mProductMatch,mQueryNeighborDelta,mNeighborDelta;
public SRSearcher() {
mReactantSearcher = new SSSearcher() {
@Override public boolean areAtomsSimilar(int moleculeAtom, int fragmentAtom) {
return super.areAtomsSimilar(moleculeAtom, fragmentAtom) && productAtomMatches(moleculeAtom, fragmentAtom);
}
@Override public boolean areBondsSimilar(int moleculeBond, int fragmentBond) {
return super.areBondsSimilar(moleculeBond, fragmentBond) && productBondMatches(moleculeBond, fragmentBond);
}
};
mProductSearcher = new SSSearcher() {
@Override public boolean areAtomsSimilar(int moleculeAtom, int fragmentAtom) {
return (mProductMatch == null || mProductMatch[fragmentAtom] == -1 || mProductMatch[fragmentAtom] == moleculeAtom)
&& super.areAtomsSimilar(moleculeAtom, fragmentAtom);
}
};
}
public void setQuery(byte[] rxncode, byte[] rxnmapping, byte[] rxncoords, long[] reactantFFP, long[] productFFP) {
mQueryCode = rxncode;
mQueryMapping = rxnmapping;
mQueryCoords = rxncoords;
mQueryIsPreprocessed = false;
mQueryReactant = null;
mQueryReactantFFP = reactantFFP;
mQueryProduct = null;
mQueryProductFFP = productFFP;
}
public void setReaction(byte[] rxncode, byte[] rxnmapping, byte[] rxncoords, long[] reactantFFP, long[] productFFP) {
mReactionCode = rxncode;
mReactionMapping = rxnmapping;
mReactionCoords = rxncoords;
mReactionIsPreprocessed = false;
mReactant = null;
mReactantFFP = reactantFFP;
mProduct = null;
mProductFFP = productFFP;
}
/**
* This defines the query reaction (or transformation).
* Typically, this method is called once, while setReaction() is called many times,
* if a reaction collection is searched for hits. For acceleration through ffp based
* pre-screening, you should use this method to supply query ffps.
* If the query reaction contains multiple reactants or multiple products,
* then setQuery() merges these into one reactant and one product molecule.
* If you call setQuery() with the same query reactions multiple times, then
* for a maximum of performance you should cache merged query reactions and pass these.
* Merging can be done by getMergedCopy() of the reaction class.
* @param query
* @param reactantFFP
* @param productFFP
*/
public void setQuery(Reaction query, long[] reactantFFP, long[] productFFP) {
mQueryCode = null;
mQueryReactantFFP = reactantFFP;
mQueryProductFFP = productFFP;
mQueryIsPreprocessed = false;
if (query == null || query.getReactants() == 0 || query.getProducts() == 0) {
mQueryReactant = null;
mQueryProduct = null;
return;
}
splitQuery(query);
}
/**
* This defines the query reaction (or transformation).
* Typically, this method is called once, while setReaction() is called many times,
* if a reaction collection is searched for hits. For acceleration through ffp based
* pre-screening, you should use this method to supply query ffps.
* If the query reaction contains multiple reactants or multiple products,
* these are merged into one molecule each.
* Thus, for a maximum of performance you may avoid this step by parsing a reaction
* that contains one reactant and one product only.
* @param reaction
* @param reactantFFP
* @param productFFP
*/
public void setReaction(Reaction reaction, long[] reactantFFP, long[] productFFP) {
mReactionCode = null;
mReactantFFP = reactantFFP;
mProductFFP = productFFP;
mReactionIsPreprocessed = false;
if (reaction == null || reaction.getReactants() == 0 || reaction.getProducts() == 0) {
mReactant = null;
mProduct = null;
return;
}
splitReaction(reaction);
}
/**
* This defines the query reaction (or transformation).
* Typically, this method is called once, while setReaction() is called many times,
* if a reaction collection is searched for hits.
* If the query reaction contains multiple reactants or multiple products,
* these are merged into one molecule each.
* Thus, for a maximum of performance you may avoid this step by parsing a reaction
* that contains one reactant and one product only.
* @param query
*/
public void setQuery(Reaction query) {
mQueryCode = null;
mQueryReactantFFP = null;
mQueryProductFFP = null;
mQueryIsPreprocessed = false;
if (query == null || query.getReactants() == 0 || query.getProducts() == 0) {
mQueryReactant = null;
mQueryProduct = null;
return;
}
// if (!query.isPerfectlyMapped())
// return;
splitQuery(query);
}
public void setReaction(Reaction reaction) {
mReactionCode = null;
mReactantFFP = null;
mProductFFP = null;
mReactionIsPreprocessed = false;
if (reaction == null || reaction.getReactants() == 0 || reaction.getProducts() == 0) {
mReactant = null;
mProduct = null;
return;
}
splitReaction(reaction);
}
public void stop() {
mReactantSearcher.stop();
mProductSearcher.stop();
}
private void preprocessQuery() {
if (!mQueryIsPreprocessed) {
mQueryMaxMapNo = getHighestMapNo(mQueryReactant, mQueryProduct);
mReactantSearcher.setFragment(mQueryReactant);
mProductSearcher.setFragment(mQueryProduct);
if (mQueryReactant != null && mQueryProduct != null) {
mQueryReactantToProductAtom = createReactantToProductAtomMap(mQueryReactant, mQueryProduct, mQueryMaxMapNo);
mQueryReactantToProductBond = createReactantToProductBondMap(mQueryReactant, mQueryProduct, mQueryReactantToProductAtom);
mQueryNeighborDelta = createMappedAtomNeighborDeltas(mQueryReactant, mQueryProduct, mQueryReactantToProductAtom);
}
mQueryIsPreprocessed = true;
}
}
private void preprocessReaction() {
if (!mReactionIsPreprocessed) {
mMaxMapNo = getHighestMapNo(mReactant, mProduct);
mReactantSearcher.setMolecule(mReactant);
mProductSearcher.setMolecule(mProduct);
if (mReactant != null && mProduct != null) {
mReactantToProductAtom = createReactantToProductAtomMap(mReactant, mProduct, mMaxMapNo);
mReactantToProductBond = createReactantToProductBondMap(mReactant, mProduct, mReactantToProductAtom);
mNeighborDelta = createMappedAtomNeighborDeltas(mReactant, mProduct, mReactantToProductAtom);
}
mReactionIsPreprocessed = true;
}
}
private int getHighestMapNo(StereoMolecule reactant, StereoMolecule product) {
int maxMapNo = 0;
for (int atom=0; atom matchList = mReactantSearcher.getMatchList();
for (int[] match:matchList) {
Arrays.fill(mProductMatch, -1);
for (int i=0; i 1) {
if (mQueryReactantBuffer == null)
mQueryReactantBuffer = new StereoMolecule();
mQueryReactant = mQueryReactantBuffer;
query.getReactant(0).copyMolecule(mQueryReactant);
for (int i=1; i 1) {
if (mReactantBuffer == null)
mReactantBuffer = new StereoMolecule();
mReactant = mReactantBuffer;
reaction.getReactant(0).copyMolecule(mReactant);
for (int i=1; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy