
smile.clustering.linkage.Linkage Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering.linkage;
/**
* A measure of dissimilarity between clusters (i.e. sets of observations).
*
* References
*
* - Anil K. Jain, Richard C. Dubes. Algorithms for clustering data. 1988.
*
*
* @see smile.clustering.HierarchicalClustering
*
* @author Haifeng Li
*/
public abstract class Linkage {
/** The data size. */
int size;
/**
* Linearized proximity matrix to store the pair-wise distance measure
* as dissimilarity between clusters. To save space, we only need the
* lower half of matrix. And we use float instead of double to save
* more space, which also help speed performance. During the
* clustering, this matrix will be updated to reflect the dissimilarity
* of merged clusters.
*/
float[] proximity;
/** Initialize the linkage with the lower triangular proximity matrix. */
void init(double[][] proximity) {
size = proximity.length;
this.proximity = new float[size * (size+1) / 2];
// row wise
/*
for (int i = 0, k = 0; i < size; i++) {
double[] pi = proximity[i];
for (int j = 0; j <= i; j++, k++) {
this.proximity[k] = (float) pi[j];
}
}
*/
// column wise
for (int j = 0, k = 0; j < size; j++) {
for (int i = j; i < size; i++, k++) {
this.proximity[k] = (float) proximity[i][j];
}
}
}
int index(int i, int j) {
// row wise
// return i > j ? i*(i+1)/2 + j : j*(j+1)/2 + i;
// column wise
return i > j ? proximity.length - (size-j)*(size-j+1)/2 + i - j : proximity.length - (size-i)*(size-i+1)/2 + j - i;
}
/** Returns the proximity matrix size. */
public int size() {
return size;
}
/**
* Returns the distance/dissimilarity between two clusters/objects, which
* are indexed by integers.
*/
public float d(int i, int j) {
return proximity[index(i, j)];
}
/**
* Merge two clusters into one and update the proximity matrix.
* @param i cluster id.
* @param j cluster id.
*/
public abstract void merge(int i, int j);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy