com.actelion.research.chem.reaction.ReactionArrow Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
package com.actelion.research.chem.reaction;
import com.actelion.research.chem.AbstractDrawingObject;
import com.actelion.research.chem.DepictorTransformation;
import com.actelion.research.chem.Molecule;
import com.actelion.research.gui.generic.GenericDrawContext;
import com.actelion.research.gui.generic.GenericPoint;
import com.actelion.research.gui.generic.GenericPolygon;
import com.actelion.research.gui.generic.GenericRectangle;
import com.actelion.research.util.ColorHelper;
public class ReactionArrow extends AbstractDrawingObject {
public static final String TYPE_STRING = "arrow";
private static final int PART_NONE = 0;
private static final int PART_ARROW_START = 1;
private static final int PART_ARROW_END = 2;
private static final int PART_ARROW = 3;
int mHiliteStatus;
public ReactionArrow() {
mPoint = new GenericPoint[2];
mPoint[0] = new GenericPoint();
mPoint[1] = new GenericPoint();
mHiliteStatus = PART_NONE;
}
public ReactionArrow(String descriptorDetail) {
this();
int index1 = 0;
while (index1 != -1) {
// text="this is a test"
// 012345678901234567890
int index2 = descriptorDetail.indexOf("=\"", index1);
if (index2 == -1)
break; // should never happen
String key = descriptorDetail.substring(index1+1, index2);
index1 = descriptorDetail.indexOf("\"", index2+2);
String value = (index1 == -1) ? descriptorDetail.substring(index2+1)
: descriptorDetail.substring(index2+1, index1);
if (key.equals("x1"))
try { mPoint[0].x = Float.parseFloat(value); } catch (NumberFormatException nfe) {}
else if (key.equals("y1"))
try { mPoint[0].y = Float.parseFloat(value); } catch (NumberFormatException nfe) {}
else if (key.equals("x2"))
try { mPoint[1].x = Float.parseFloat(value); } catch (NumberFormatException nfe) {}
else if (key.equals("y2"))
try { mPoint[1].y = Float.parseFloat(value); } catch (NumberFormatException nfe) {}
}
}
@Override
public String getTypeString() {
return TYPE_STRING;
}
@Override
public String getDescriptorDetail() {
StringBuilder detail = new StringBuilder();
detail.append(" x1=\""+mPoint[0].x + "\"");
detail.append(" y1=\""+mPoint[0].y + "\"");
detail.append(" x2=\""+mPoint[1].x + "\"");
detail.append(" y2=\""+mPoint[1].y + "\"");
return detail.toString();
}
@Override
public AbstractDrawingObject clone() {
ReactionArrow arrow = new ReactionArrow();
arrow.mPoint[0].x = this.mPoint[0].x;
arrow.mPoint[0].y = this.mPoint[0].y;
arrow.mPoint[1].x = this.mPoint[1].x;
arrow.mPoint[1].y = this.mPoint[1].y;
arrow.mIsSelected = this.mIsSelected;
return arrow;
}
public float getLength() {
int dx = (int)(mPoint[1].x - mPoint[0].x);
int dy = (int)(mPoint[1].y - mPoint[0].y);
return (float)Math.sqrt(dx*dx+dy*dy);
}
public void setCoordinates(double x1, double y1, double x2, double y2) {
mPoint[0].x = x1;
mPoint[0].y = y1;
mPoint[1].x = x2;
mPoint[1].y = y2;
}
@Override
public void translate(double x, double y) {
switch (mHiliteStatus) {
case PART_ARROW_START:
mPoint[0].x = mTransformationValue1[0] + x - mTransformationReferenceX;
mPoint[0].y = mTransformationValue2[0] + y - mTransformationReferenceY;
break;
case PART_ARROW_END:
mPoint[1].x = mTransformationValue1[1] + x - mTransformationReferenceX;
mPoint[1].y = mTransformationValue2[1] + y - mTransformationReferenceY;
break;
default:
super.translate(x, y);
break;
}
}
@Override
public void draw(GenericDrawContext context, DepictorTransformation t) {
context.setRGB(mIsSelected ? ColorHelper.getContrastColor(0x00FF0000, context.getBackgroundRGB())
: context.getForegroundRGB());
double x1 = (t == null) ? mPoint[0].x : t.transformX(mPoint[0].x);
double y1 = (t == null) ? mPoint[0].y : t.transformY(mPoint[0].y);
double x2 = (t == null) ? mPoint[1].x : t.transformX(mPoint[1].x);
double y2 = (t == null) ? mPoint[1].y : t.transformY(mPoint[1].y);
double dx = x2 - x1;
double dy = y2 - y1;
context.setLineWidth(Math.max(1f, 0.02f*(float)Math.sqrt(dx*dx+dy*dy)));
context.drawLine(x1, y1, x2, y2);
GenericPolygon p = new GenericPolygon(4);
p.addPoint(x2+dx/40, y2+dy/40);
p.addPoint(x2 - dx/5 + dy/10, y2 - dy/5 - dx/10);
p.addPoint(x2 - dx/20,y2 - dy/20);
p.addPoint(x2 - dx/5 - dy/10, y2 - dy/5 + dx/10);
context.fillPolygon(p);
}
@Override
public void hilite(GenericDrawContext context) {
context.setRGB(context.getSelectionBackgroundRGB());
switch (mHiliteStatus) {
case PART_ARROW_START:
context.fillCircle(mPoint[0].x-8, mPoint[0].y-8, 16);
break;
case PART_ARROW_END:
context.fillCircle(mPoint[1].x-8, mPoint[1].y-8, 16);
break;
case PART_ARROW:
double length = getLength();
double f = Math.max(length/8.0f, 3.0f);
double angle = Molecule.getAngle(mPoint[0].x, mPoint[0].y, mPoint[1].x, mPoint[1].y);
double dx = f * Math.cos(angle);
double dy = -f * Math.sin(angle);
GenericPolygon p = new GenericPolygon(4);
p.addPoint(mPoint[0].x + dx, mPoint[0].y + dy);
p.addPoint(mPoint[1].x + dx, mPoint[1].y + dy);
p.addPoint(mPoint[1].x - dx, mPoint[1].y - dy);
p.addPoint(mPoint[0].x - dx, mPoint[0].y - dy);
context.fillPolygon(p);
break;
}
}
@Override
public boolean contains(double x, double y) {
return (findPart(x, y) != PART_NONE);
}
@Override
public boolean checkHiliting(double x, double y) {
mHiliteStatus = findPart(x, y);
return (mHiliteStatus != PART_NONE);
}
@Override
public void clearHiliting() {
mHiliteStatus = PART_NONE;
}
private int findPart(double x, double y) {
double distanceToStart = Math.sqrt((mPoint[0].x-x)*(mPoint[0].x-x)+(mPoint[0].y-y)*(mPoint[0].y-y));
if (distanceToStart < 8.0)
return PART_ARROW_START;
double distanceToEnd = Math.sqrt((mPoint[1].x-x)*(mPoint[1].x-x)+(mPoint[1].y-y)*(mPoint[1].y-y));
if (distanceToEnd < 8.0)
return PART_ARROW_END;
double arrowLength = Math.sqrt((mPoint[1].x-mPoint[0].x)*(mPoint[1].x-mPoint[0].x)+(mPoint[1].y-mPoint[0].y)*(mPoint[1].y-mPoint[0].y));
if (distanceToStart + distanceToEnd < arrowLength + 5)
return PART_ARROW;
return PART_NONE;
}
@Override
public GenericRectangle getBoundingRect(GenericDrawContext context) {
double length = getLength();
double f = Math.max(length/8.0, 3.0);
double angle = Molecule.getAngle(mPoint[0].x, mPoint[0].y, mPoint[1].x, mPoint[1].y);
double dx = Math.abs(f * Math.cos(angle));
double dy = Math.abs(f * Math.sin(angle));
GenericRectangle bounds = new GenericRectangle();
if (mPoint[0].x < mPoint[1].x) {
bounds.x = mPoint[0].x - dx;
bounds.width = mPoint[1].x - mPoint[0].x + 2*dx;
}
else {
bounds.x = mPoint[1].x - dx;
bounds.width = mPoint[0].x - mPoint[1].x + 2*dx;
}
if (mPoint[0].y < mPoint[1].y) {
bounds.y = mPoint[0].y - dy;
bounds.height = mPoint[1].y - mPoint[0].y + 2*dy;
}
else {
bounds.y = mPoint[1].y - dy;
bounds.height = mPoint[0].y - mPoint[1].y + 2*dy;
}
return bounds;
}
public boolean isOnProductSide(double x, double y) {
double dx = mPoint[1].x - mPoint[0].x;
double dy = mPoint[1].y - mPoint[0].y;
double mx = (mPoint[0].x + mPoint[1].x) / 2.0;
double my = (mPoint[0].y + mPoint[1].y) / 2.0;
if (dx == 0.0)
return (dy < 0.0) ^ (y > my);
if (dy == 0.0)
return (dx < 0.0) ^ (x > mx);
double m = -dx/dy; // m of orthogonal line through S
double sx = (mPoint[0].x + m*m*x - m*y + m*mPoint[0].y) / (1 + m*m);
return (dx < 0.0) ^ (sx > mx);
}
}