All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.orbit.imageAnalysis.features.TissueFeatures Maven / Gradle / Ivy

Go to download

Orbit, a versatile image analysis software for biological image-based quantification

There is a newer version: 3.15
Show newest version
/*
 *     Orbit, a versatile image analysis software for biological image-based quantification.
 *     Copyright (C) 2009 - 2017 Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland.
 *
 *     This program is free software: you can redistribute it and/or modify
 *     it under the terms of the GNU General Public License as published by
 *     the Free Software Foundation, either version 3 of the License, or
 *     (at your option) any later version.
 *
 *     This program is distributed in the hope that it will be useful,
 *     but WITHOUT ANY WARRANTY; without even the implied warranty of
 *     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *     GNU General Public License for more details.
 *
 *     You should have received a copy of the GNU General Public License
 *     along with this program.  If not, see .
 *
 */

package com.actelion.research.orbit.imageAnalysis.features;

import com.actelion.research.orbit.exceptions.OrbitImageServletException;
import com.actelion.research.orbit.imageAnalysis.models.FeatureDescription;
import com.actelion.research.orbit.imageAnalysis.utils.OrbitUtils;
import com.actelion.research.orbit.imageAnalysis.utils.TiledImagePainter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.awt.*;
import java.awt.image.Raster;

/**
 * Attention: This class is not thread-safe!!!
* Channel usage (useRed,useGreen,useBlue) is treated in feats[] assignment loop - all samples are calculated! */ public class TissueFeatures { private final static Logger logger = LoggerFactory.getLogger(TissueFeatures.class); private static double EPSILON = 0.00000001d; private int featuresPerSample = 6; private int samples = 3; private int windowSize = 4; private int[] buf = null; private double[] pix = null; private double[] mean = null; private double[] min = null; private double[] max = null; private double[] sd = null; private double[] edge = null; // edge intensity per sample private TiledImagePainter bimg = null; private int[] p = new int[4]; // buffer of one pixel up to 4 samples private int featureSet = FeatureDescription.FEATURE_SET_PIX_MEAN_MIN_MAX_SD_EDGE; private FeatureDescription featureDescription = null; private TissueFeaturesOld oldFeatures = null; // for backward compatibility public TissueFeatures() { } /** * bimg can be null (then raster r in buildFeatures cannot be null) */ public TissueFeatures(final FeatureDescription featureDescription, final TiledImagePainter bimg) { // for old featureDescription version use old features for backward compatibility if (featureDescription.getFeatureVersion() < 1) { oldFeatures = new TissueFeaturesOld(featureDescription, bimg); logger.debug("using old tissue features for backward compatibility"); } this.samples = featureDescription.getSampleSize(); this.windowSize = featureDescription.getWindowSize(); this.featureSet = featureDescription.getFeatureSet(); this.featureDescription = featureDescription; this.bimg = bimg; buf = new int[(windowSize * 2 + 1) * (windowSize * 2 + 1) * samples]; pix = new double[samples]; mean = new double[samples]; min = new double[samples]; max = new double[samples]; sd = new double[samples]; edge = new double[samples]; if (featureSet == FeatureDescription.FEATURE_SET_INTENS) featuresPerSample = 1; else if (featureSet == FeatureDescription.FEATURE_SET_PIX_MEAN_MIN_MAX_SD) featuresPerSample = 5; else featuresPerSample = 6; // with edge } /** * Initializes a double array of a sufficient size given the feature description. * * @return */ public double[] prepareDoubleArray() { return new double[(windowSize * 2 + 1) * (windowSize * 2 + 1) * samples + 1]; // +1 for contextclassification??? } /** * computes tissue features (mean,min,max,sd of each sample (r,g,b or grey)).
* Not thread-safe!!! * * @param r can be null (then bimg cannot be null in the constructor) * @param x * @param y * @param classVal (set to Double.NaN for classification) * @return * @throws OrbitImageServletException */ public double[] buildFeatures(final Raster r, final int x, final int y, final double classVal) throws OrbitImageServletException { // check backward compatibility if (oldFeatures != null) return oldFeatures.buildFeatures(r, x, y, classVal); if (featureSet == FeatureDescription.FEATURE_SET_INTENS) return buildIntensFeatures(r, x, y, classVal); // init for (int i = 0; i < samples; i++) { mean[i] = 0d; min[i] = Double.NaN; max[i] = Double.NaN; sd[i] = 0d; edge[i] = 0d; } if (r != null) // faster if raster is pre-assigned (e.g. the shape fits into memory) { buf = r.getPixels(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1, buf); p = r.getPixel(x, y, p); // mid-pixel } else { // slower, but works for very large shapes Raster r2 = bimg.getData(new Rectangle(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1), featureDescription); // The modifyRaster works very slow. As optimization the getData() method in OrbitTiledImage2 could be overwritten (copy code from PlanarImage) with featureDescription as argument, then this new method // would use the getTile() method with featureDescription as argument and not the standard getTile method. This would make use of the tile caching mechanism in OrbitTiledImage2. // However, normally such large shapes are not used at all. r2 = OrbitUtils.getModifiedRaster(r2, featureDescription, bimg.getImage().getColorModel(), bimg.getImage().getLevel()); if (r2 == null) System.out.println("r2 is null!!"); buf = r2.getPixels(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1, buf); p = r2.getPixel(x, y, p); } // System.out.println("pixel: "+Arrays.toString(p)); // System.out.println("buf: "+Arrays.toString(buf)); // System.out.println("samples: "+samples+" windowSize: "+windowSize); // middle pixel for (int i = 0; i < samples; i++) pix[i] = p[i]; // Remark: System.arraycopy() does not work here because pix is double[] and p is int[]! //int[] p = new int[4]; // r,g,b,alpha (if available) int cnt = 1; // bugfix due to +samples int bufPos = 0; //for (int px=x-windowSize; px<=x+windowSize; px++) // for (int py=y-windowSize; py<=y+windowSize; py++) while (bufPos < buf.length - samples) { //if (r!=null) //p = r.getPixel(px, py, p); // better use getPixels()... //else p = bimg.getPixels(px, py, windowSize, p); //int d = Math.max(Math.abs(px-x), Math.abs(py-y)); // use it as weights for (int i = 0; i < samples; i++) { /* mean[i] +=p[i]; if (Double.isNaN(min[i]) || (min[i] > p[i])) min[i] = p[i]; if (Double.isNaN(max[i]) || (max[i] < p[i])) max[i] = p[i]; */ mean[i] += buf[bufPos]; if (Double.isNaN(min[i]) || (min[i] > buf[bufPos])) min[i] = buf[bufPos]; //bufPos++; // bugfix if (Double.isNaN(max[i]) || (max[i] < buf[bufPos])) max[i] = buf[bufPos]; //bufPos++; // bugfix bufPos++; } cnt++; } if (cnt > 0) for (int i = 0; i < samples; i++) { if (mean[i] > 0) mean[i] /= (double) cnt; } // sd and edge cnt = 0; bufPos = 0; //for (int px=x-windowSize; px<=x+windowSize; px++) // for (int py=y-windowSize; py<=y+windowSize; py++) while (bufPos < buf.length) { //p = r.getPixel(px, py, p); // better use getPixels()... //int d = Math.max(Math.abs(px-x), Math.abs(py-y)); // use it as weights for (int i = 0; i < samples; i++) { //sd[i] += (mean[i]-p[i]) * (mean[i]-p[i]); sd[i] += (mean[i] - buf[bufPos]) * (mean[i] - buf[bufPos]); //bufPos++; edge[i] += (pix[i] - buf[bufPos]) * (pix[i] - buf[bufPos]); bufPos++; } cnt++; } for (int i = 0; i < samples; i++) { if (cnt > 1) { sd[i] /= (double) (cnt - 1); if (sd[i] > EPSILON) { sd[i] = Math.sqrt(sd[i]); } else sd[i] = Double.NaN; edge[i] /= (double) (cnt - 1); if (edge[i] > EPSILON) { edge[i] = Math.sqrt(edge[i]); } else edge[i] = Double.NaN; } else { sd[i] = Double.NaN; edge[i] = Double.NaN; } } // System.out.println("pix: "+Arrays.toString(pix)); // System.out.println("mean: "+Arrays.toString(mean)); // System.out.println("min: "+Arrays.toString(min)); // System.out.println("max: "+Arrays.toString(max)); // System.out.println("sd: "+Arrays.toString(sd)); // store features double[] feats = new double[featuresPerSample * samples + 1]; for (int i = 0; i < samples; i++) { if ((i == 0) && (featureDescription.isSkipRed())) continue; if ((i == 1) && (featureDescription.isSkipGreen())) continue; if ((i == 2) && (featureDescription.isSkipBlue())) continue; feats[(samples * 0) + i] = pix[i]; feats[(samples * 1) + i] = mean[i]; feats[(samples * 2) + i] = min[i]; feats[(samples * 3) + i] = max[i]; feats[(samples * 4) + i] = sd[i]; if (featureSet >= FeatureDescription.FEATURE_SET_PIX_MEAN_MIN_MAX_SD_EDGE) feats[(samples * 5) + i] = edge[i]; } feats[feats.length - 1] = classVal; //logger.trace(feats.toString()); return feats; } private double[] buildIntensFeatures(final Raster r, final int x, final int y, final double classVal) throws OrbitImageServletException { // init for (int i = 0; i < samples; i++) { mean[i] = 0d; } if (r != null) // faster if raster is pre-assigned (e.g. the shape fits into memory) { buf = r.getPixels(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1, buf); p = r.getPixel(x, y, p); // mid-pixel } else { // slower, but works for very large shapes Raster r2 = bimg.getData(new Rectangle(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1), featureDescription); if (r2 == null) System.out.println("r2 is null!!"); buf = r2.getPixels(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1, buf); p = r2.getPixel(x, y, p); } for (int i = 0; i < samples; i++) { mean[0] += p[i]; } mean[0] /= (double) samples; double[] feats = new double[featuresPerSample * samples + 1]; for (int i = 0; i < samples; i++) { if ((i == 0) && (featureDescription.isSkipRed())) continue; if ((i == 1) && (featureDescription.isSkipGreen())) continue; if ((i == 2) && (featureDescription.isSkipBlue())) continue; feats[(samples * 0) + i] = mean[i]; } feats[feats.length - 1] = classVal; //logger.trace(Arrays.toString(feats)); return feats; } public int getFeaturesPerSample() { return featuresPerSample; } public static double extractSD(double[] feats) { return sumOrNan(feats[12],feats[13],feats[14]); } public static double extractEdge(double[] feats) { return sumOrNan(feats[15],feats[16],feats[17]); } public static double extractMin(double[] feats) { return sumOrNan(feats[6],feats[7],feats[8]); } public static double extractMax(double[] feats) { return sumOrNan(feats[9],feats[10],feats[11]); } public static double extractMean(double[] feats) { return sumOrNan(feats[3],feats[4],feats[5]); } public static double extractPix(double[] feats) { return sumOrNan(feats[0],feats[1],feats[2]); } /** * returns 0 if the value is Double.NaN, otherwise the value * @param d * @return */ private static double v0(double d) { return Double.isNaN(d)?0d:d; } private static double sumOrNan(double d1, double d2, double d3) { if (Double.isNaN(d1)&&Double.isNaN(d2)&&Double.isNaN(d3)) { return Double.NaN; } else { return v0(d1)+v0(d2)+v0(d3); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy