com.actelion.research.orbit.imageAnalysis.segmenter.FiniteDifferenceSegmenter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of orbit-image-analysis Show documentation
Show all versions of orbit-image-analysis Show documentation
Orbit, a versatile image analysis software for biological image-based quantification
/*
* Orbit, a versatile image analysis software for biological image-based quantification.
* Copyright (C) 2009 - 2017 Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package com.actelion.research.orbit.imageAnalysis.segmenter;
import com.actelion.research.orbit.imageAnalysis.segmenter.celldetector.CellDetector;
import com.actelion.research.orbit.imageAnalysis.segmenter.celldetector.imageprocessing.ImageFunctions;
import com.actelion.research.orbit.imageAnalysis.segmenter.finitedifference.FiniteDifferenceSolver;
import com.actelion.research.orbit.imageAnalysis.segmenter.linalg.AbstractVector;
import com.actelion.research.orbit.imageAnalysis.segmenter.math.ImageFunction;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.util.List;
/**
* Class detects cells on an image, where the background noise has already been removed, performing
* the following steps:
*
* - Convert input image to gray-valued image
* - Smooth image by minimizing a functional of the form \int_\Omega (f-u )^2 + \alpha \Vert\nabla
* u\Vert_2^2 dx. This minimization problem is transformed into a PDE and solved with finite
* differences using the class
* {@link com.actelion.research.orbit.imageAnalysis.segmenter.finitedifference.FiniteDifferenceSolver}
* - Detect the cells (polygons and seed points) by making use of class
* {@link com.actelion.research.orbit.imageAnalysis.segmenter.celldetector.CellDetector}
*
*/
public class FiniteDifferenceSegmenter {
private double alpha;
private float cellSize;
private BufferedImage bgSegmentedImage;
private BufferedImage grayCellImage;
private BufferedImage polygonPaintedImage;
private AbstractVector smoothImage;
private CellDetector cellDetector;
private List polygons;
private List seedPoints;
/**
* Constructs a segmenter
*
* @param bgSegmentedImage
* background noise remove image
* @param alpha
* parameter indicating the smoothness of the resulting image by minimizing the
* functional
* @param cellRadius
* Approximate cell radius in pixel
*/
public FiniteDifferenceSegmenter(BufferedImage bgSegmentedImage, double alpha, float cellRadius) {
super();
this.cellSize = cellRadius;
this.bgSegmentedImage = bgSegmentedImage;
this.alpha = alpha;
}
/**
* Perfoms the segmentation
*/
public void segment() {
grayCellImage = ImageFunctions.convertToGrayscale(bgSegmentedImage);
smoothImage();
detectCells();
}
private void smoothImage() {
FiniteDifferenceSolver finiteDifferenceSolver = new FiniteDifferenceSolver(
new ImageFunction(grayCellImage), new ImageFunction(grayCellImage),
grayCellImage.getHeight(), grayCellImage.getWidth());
finiteDifferenceSolver.setAlpha(this.alpha);
finiteDifferenceSolver.assemble();
finiteDifferenceSolver.solve();
smoothImage = finiteDifferenceSolver.getSolution();
}
private void detectCells() {
cellDetector = new CellDetector(grayCellImage, cellSize);
cellDetector.setDataFromImage(smoothImage, grayCellImage.getHeight(), grayCellImage.getWidth());
cellDetector.findCells();
polygons = cellDetector.getPolygons();
seedPoints = cellDetector.getSeedPoints();
polygonPaintedImage = ImageFunctions.paintPolygons(bgSegmentedImage, polygons, seedPoints);
}
/**
* Exports the detected polygons into a csv file
*
* @param file
* object to export the polygons into
*/
public void exportToCSV(File file) {
cellDetector.exportPolygons(file);
}
/**
* Returns the gray valued image
*
* @return gray valued image
*/
public BufferedImage getGrayCellImage() {
return grayCellImage;
}
/**
* Returns the smoothed image after minimizing the functional as a vector representing every pixel
* values of the smoothed image. The values are stored in a row based fashion
*
* @return smoothed image
*/
public AbstractVector getSmoothImage() {
return smoothImage;
}
/**
* Returns the original image overlaid with the polygons and seed points
*
* @return original image overlaid with the polygons and seed points
*/
public BufferedImage getPolygonPaintedImage() {
return polygonPaintedImage;
}
/**
* Returns the list of detected polygons
*
* @return list of detected polygons
*/
public List getPolygons() {
return polygons;
}
/**
* Returns the list of detected seed points (one per cell)
*
* @return list of detected seed points
*/
public List getSeedPoints() {
return seedPoints;
}
}