All Downloads are FREE. Search and download functionalities are using the official Maven repository.

acscommons.com.google.common.collect.TreeMultiset Maven / Gradle / Ivy

There is a newer version: 6.10.0
Show newest version
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package acscommons.com.google.common.collect;

import static acscommons.com.google.common.base.Preconditions.checkArgument;
import static acscommons.com.google.common.base.Preconditions.checkNotNull;
import static acscommons.com.google.common.base.Preconditions.checkState;
import static acscommons.com.google.common.collect.CollectPreconditions.checkNonnegative;
import static acscommons.com.google.common.collect.NullnessCasts.uncheckedCastNullableTToT;
import static java.util.Objects.requireNonNull;

import acscommons.com.google.common.annotations.GwtCompatible;
import acscommons.com.google.common.annotations.GwtIncompatible;
import acscommons.com.google.common.annotations.J2ktIncompatible;
import acscommons.com.google.common.base.MoreObjects;
import acscommons.com.google.common.primitives.Ints;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.function.ObjIntConsumer;
import javax.annotation.CheckForNull;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * A multiset which maintains the ordering of its elements, according to either their natural order
 * or an explicit {@link Comparator}. In all cases, this implementation uses {@link
 * Comparable#compareTo} or {@link Comparator#compare} instead of {@link Object#equals} to determine
 * equivalence of instances.
 *
 * 

Warning: The comparison must be consistent with equals as explained by the * {@link Comparable} class specification. Otherwise, the resulting multiset will violate the {@link * java.util.Collection} contract, which is specified in terms of {@link Object#equals}. * *

See the Guava User Guide article on {@code Multiset}. * * @author Louis Wasserman * @author Jared Levy * @since 2.0 */ @GwtCompatible(emulated = true) @ElementTypesAreNonnullByDefault public final class TreeMultiset extends AbstractSortedMultiset implements Serializable { /** * Creates a new, empty multiset, sorted according to the elements' natural order. All elements * inserted into the multiset must implement the {@code Comparable} interface. Furthermore, all * such elements must be mutually comparable: {@code e1.compareTo(e2)} must not throw a * {@code ClassCastException} for any elements {@code e1} and {@code e2} in the multiset. If the * user attempts to add an element to the multiset that violates this constraint (for example, the * user attempts to add a string element to a set whose elements are integers), the {@code * add(Object)} call will throw a {@code ClassCastException}. * *

The type specification is {@code }, instead of the more specific * {@code >}, to support classes defined without generics. */ public static TreeMultiset create() { return new TreeMultiset(Ordering.natural()); } /** * Creates a new, empty multiset, sorted according to the specified comparator. All elements * inserted into the multiset must be mutually comparable by the specified comparator: * {@code comparator.compare(e1, e2)} must not throw a {@code ClassCastException} for any elements * {@code e1} and {@code e2} in the multiset. If the user attempts to add an element to the * multiset that violates this constraint, the {@code add(Object)} call will throw a {@code * ClassCastException}. * * @param comparator the comparator that will be used to sort this multiset. A null value * indicates that the elements' natural ordering should be used. */ @SuppressWarnings("unchecked") public static TreeMultiset create( @CheckForNull Comparator comparator) { return (comparator == null) ? new TreeMultiset((Comparator) Ordering.natural()) : new TreeMultiset(comparator); } /** * Creates an empty multiset containing the given initial elements, sorted according to the * elements' natural order. * *

This implementation is highly efficient when {@code elements} is itself a {@link Multiset}. * *

The type specification is {@code }, instead of the more specific * {@code >}, to support classes defined without generics. */ public static TreeMultiset create(Iterable elements) { TreeMultiset multiset = create(); Iterables.addAll(multiset, elements); return multiset; } private final transient Reference> rootReference; private final transient GeneralRange range; private final transient AvlNode header; TreeMultiset(Reference> rootReference, GeneralRange range, AvlNode endLink) { super(range.comparator()); this.rootReference = rootReference; this.range = range; this.header = endLink; } TreeMultiset(Comparator comparator) { super(comparator); this.range = GeneralRange.all(comparator); this.header = new AvlNode<>(); successor(header, header); this.rootReference = new Reference<>(); } /** A function which can be summed across a subtree. */ private enum Aggregate { SIZE { @Override int nodeAggregate(AvlNode node) { return node.elemCount; } @Override long treeAggregate(@CheckForNull AvlNode root) { return (root == null) ? 0 : root.totalCount; } }, DISTINCT { @Override int nodeAggregate(AvlNode node) { return 1; } @Override long treeAggregate(@CheckForNull AvlNode root) { return (root == null) ? 0 : root.distinctElements; } }; abstract int nodeAggregate(AvlNode node); abstract long treeAggregate(@CheckForNull AvlNode root); } private long aggregateForEntries(Aggregate aggr) { AvlNode root = rootReference.get(); long total = aggr.treeAggregate(root); if (range.hasLowerBound()) { total -= aggregateBelowRange(aggr, root); } if (range.hasUpperBound()) { total -= aggregateAboveRange(aggr, root); } return total; } private long aggregateBelowRange(Aggregate aggr, @CheckForNull AvlNode node) { if (node == null) { return 0; } // The cast is safe because we call this method only if hasLowerBound(). int cmp = comparator() .compare(uncheckedCastNullableTToT(range.getLowerEndpoint()), node.getElement()); if (cmp < 0) { return aggregateBelowRange(aggr, node.left); } else if (cmp == 0) { switch (range.getLowerBoundType()) { case OPEN: return aggr.nodeAggregate(node) + aggr.treeAggregate(node.left); case CLOSED: return aggr.treeAggregate(node.left); default: throw new AssertionError(); } } else { return aggr.treeAggregate(node.left) + aggr.nodeAggregate(node) + aggregateBelowRange(aggr, node.right); } } private long aggregateAboveRange(Aggregate aggr, @CheckForNull AvlNode node) { if (node == null) { return 0; } // The cast is safe because we call this method only if hasUpperBound(). int cmp = comparator() .compare(uncheckedCastNullableTToT(range.getUpperEndpoint()), node.getElement()); if (cmp > 0) { return aggregateAboveRange(aggr, node.right); } else if (cmp == 0) { switch (range.getUpperBoundType()) { case OPEN: return aggr.nodeAggregate(node) + aggr.treeAggregate(node.right); case CLOSED: return aggr.treeAggregate(node.right); default: throw new AssertionError(); } } else { return aggr.treeAggregate(node.right) + aggr.nodeAggregate(node) + aggregateAboveRange(aggr, node.left); } } @Override public int size() { return Ints.saturatedCast(aggregateForEntries(Aggregate.SIZE)); } @Override int distinctElements() { return Ints.saturatedCast(aggregateForEntries(Aggregate.DISTINCT)); } static int distinctElements(@CheckForNull AvlNode node) { return (node == null) ? 0 : node.distinctElements; } @Override public int count(@CheckForNull Object element) { try { @SuppressWarnings("unchecked") E e = (E) element; AvlNode root = rootReference.get(); if (!range.contains(e) || root == null) { return 0; } return root.count(comparator(), e); } catch (ClassCastException | NullPointerException e) { return 0; } } @CanIgnoreReturnValue @Override public int add(@ParametricNullness E element, int occurrences) { checkNonnegative(occurrences, "occurrences"); if (occurrences == 0) { return count(element); } checkArgument(range.contains(element)); AvlNode root = rootReference.get(); if (root == null) { int unused = comparator().compare(element, element); AvlNode newRoot = new AvlNode(element, occurrences); successor(header, newRoot, header); rootReference.checkAndSet(root, newRoot); return 0; } int[] result = new int[1]; // used as a mutable int reference to hold result AvlNode newRoot = root.add(comparator(), element, occurrences, result); rootReference.checkAndSet(root, newRoot); return result[0]; } @CanIgnoreReturnValue @Override public int remove(@CheckForNull Object element, int occurrences) { checkNonnegative(occurrences, "occurrences"); if (occurrences == 0) { return count(element); } AvlNode root = rootReference.get(); int[] result = new int[1]; // used as a mutable int reference to hold result AvlNode newRoot; try { @SuppressWarnings("unchecked") E e = (E) element; if (!range.contains(e) || root == null) { return 0; } newRoot = root.remove(comparator(), e, occurrences, result); } catch (ClassCastException | NullPointerException e) { return 0; } rootReference.checkAndSet(root, newRoot); return result[0]; } @CanIgnoreReturnValue @Override public int setCount(@ParametricNullness E element, int count) { checkNonnegative(count, "count"); if (!range.contains(element)) { checkArgument(count == 0); return 0; } AvlNode root = rootReference.get(); if (root == null) { if (count > 0) { add(element, count); } return 0; } int[] result = new int[1]; // used as a mutable int reference to hold result AvlNode newRoot = root.setCount(comparator(), element, count, result); rootReference.checkAndSet(root, newRoot); return result[0]; } @CanIgnoreReturnValue @Override public boolean setCount(@ParametricNullness E element, int oldCount, int newCount) { checkNonnegative(newCount, "newCount"); checkNonnegative(oldCount, "oldCount"); checkArgument(range.contains(element)); AvlNode root = rootReference.get(); if (root == null) { if (oldCount == 0) { if (newCount > 0) { add(element, newCount); } return true; } else { return false; } } int[] result = new int[1]; // used as a mutable int reference to hold result AvlNode newRoot = root.setCount(comparator(), element, oldCount, newCount, result); rootReference.checkAndSet(root, newRoot); return result[0] == oldCount; } @Override public void clear() { if (!range.hasLowerBound() && !range.hasUpperBound()) { // We can do this in O(n) rather than removing one by one, which could force rebalancing. for (AvlNode current = header.succ(); current != header; ) { AvlNode next = current.succ(); current.elemCount = 0; // Also clear these fields so that one deleted Entry doesn't retain all elements. current.left = null; current.right = null; current.pred = null; current.succ = null; current = next; } successor(header, header); rootReference.clear(); } else { // TODO(cpovirk): Perhaps we can optimize in this case, too? Iterators.clear(entryIterator()); } } private Entry wrapEntry(final AvlNode baseEntry) { return new Multisets.AbstractEntry() { @Override @ParametricNullness public E getElement() { return baseEntry.getElement(); } @Override public int getCount() { int result = baseEntry.getCount(); if (result == 0) { return count(getElement()); } else { return result; } } }; } /** Returns the first node in the tree that is in range. */ @CheckForNull private AvlNode firstNode() { AvlNode root = rootReference.get(); if (root == null) { return null; } AvlNode node; if (range.hasLowerBound()) { // The cast is safe because of the hasLowerBound check. E endpoint = uncheckedCastNullableTToT(range.getLowerEndpoint()); node = root.ceiling(comparator(), endpoint); if (node == null) { return null; } if (range.getLowerBoundType() == BoundType.OPEN && comparator().compare(endpoint, node.getElement()) == 0) { node = node.succ(); } } else { node = header.succ(); } return (node == header || !range.contains(node.getElement())) ? null : node; } @CheckForNull private AvlNode lastNode() { AvlNode root = rootReference.get(); if (root == null) { return null; } AvlNode node; if (range.hasUpperBound()) { // The cast is safe because of the hasUpperBound check. E endpoint = uncheckedCastNullableTToT(range.getUpperEndpoint()); node = root.floor(comparator(), endpoint); if (node == null) { return null; } if (range.getUpperBoundType() == BoundType.OPEN && comparator().compare(endpoint, node.getElement()) == 0) { node = node.pred(); } } else { node = header.pred(); } return (node == header || !range.contains(node.getElement())) ? null : node; } @Override Iterator elementIterator() { return Multisets.elementIterator(entryIterator()); } @Override Iterator> entryIterator() { return new Iterator>() { @CheckForNull AvlNode current = firstNode(); @CheckForNull Entry prevEntry; @Override public boolean hasNext() { if (current == null) { return false; } else if (range.tooHigh(current.getElement())) { current = null; return false; } else { return true; } } @Override public Entry next() { if (!hasNext()) { throw new NoSuchElementException(); } // requireNonNull is safe because current is only nulled out after iteration is complete. Entry result = wrapEntry(requireNonNull(current)); prevEntry = result; if (current.succ() == header) { current = null; } else { current = current.succ(); } return result; } @Override public void remove() { checkState(prevEntry != null, "no calls to next() since the last call to remove()"); setCount(prevEntry.getElement(), 0); prevEntry = null; } }; } @Override Iterator> descendingEntryIterator() { return new Iterator>() { @CheckForNull AvlNode current = lastNode(); @CheckForNull Entry prevEntry = null; @Override public boolean hasNext() { if (current == null) { return false; } else if (range.tooLow(current.getElement())) { current = null; return false; } else { return true; } } @Override public Entry next() { if (!hasNext()) { throw new NoSuchElementException(); } // requireNonNull is safe because current is only nulled out after iteration is complete. requireNonNull(current); Entry result = wrapEntry(current); prevEntry = result; if (current.pred() == header) { current = null; } else { current = current.pred(); } return result; } @Override public void remove() { checkState(prevEntry != null, "no calls to next() since the last call to remove()"); setCount(prevEntry.getElement(), 0); prevEntry = null; } }; } @Override public void forEachEntry(ObjIntConsumer action) { checkNotNull(action); for (AvlNode node = firstNode(); node != header && node != null && !range.tooHigh(node.getElement()); node = node.succ()) { action.accept(node.getElement(), node.getCount()); } } @Override public Iterator iterator() { return Multisets.iteratorImpl(this); } @Override public SortedMultiset headMultiset(@ParametricNullness E upperBound, BoundType boundType) { return new TreeMultiset( rootReference, range.intersect(GeneralRange.upTo(comparator(), upperBound, boundType)), header); } @Override public SortedMultiset tailMultiset(@ParametricNullness E lowerBound, BoundType boundType) { return new TreeMultiset( rootReference, range.intersect(GeneralRange.downTo(comparator(), lowerBound, boundType)), header); } private static final class Reference { @CheckForNull private T value; @CheckForNull public T get() { return value; } public void checkAndSet(@CheckForNull T expected, @CheckForNull T newValue) { if (value != expected) { throw new ConcurrentModificationException(); } value = newValue; } void clear() { value = null; } } private static final class AvlNode { /* * For "normal" nodes, the type of this field is `E`, not `@Nullable E` (though note that E is a * type that can include null, as in a TreeMultiset<@Nullable String>). * * For the header node, though, this field contains `null`, regardless of the type of the * multiset. * * Most code that operates on an AvlNode never operates on the header node. Such code can access * the elem field without a null check by calling getElement(). */ @CheckForNull private final E elem; // elemCount is 0 iff this node has been deleted. private int elemCount; private int distinctElements; private long totalCount; private int height; @CheckForNull private AvlNode left; @CheckForNull private AvlNode right; /* * pred and succ are nullable after construction, but we always call successor() to initialize * them immediately thereafter. * * They may be subsequently nulled out by TreeMultiset.clear(). I think that the only place that * we can reference a node whose fields have been cleared is inside the iterator (and presumably * only under concurrent modification). * * To access these fields when you know that they are not null, call the pred() and succ() * methods, which perform null checks before returning the fields. */ @CheckForNull private AvlNode pred; @CheckForNull private AvlNode succ; AvlNode(@ParametricNullness E elem, int elemCount) { checkArgument(elemCount > 0); this.elem = elem; this.elemCount = elemCount; this.totalCount = elemCount; this.distinctElements = 1; this.height = 1; this.left = null; this.right = null; } /** Constructor for the header node. */ AvlNode() { this.elem = null; this.elemCount = 1; } // For discussion of pred() and succ(), see the comment on the pred and succ fields. private AvlNode pred() { return requireNonNull(pred); } private AvlNode succ() { return requireNonNull(succ); } int count(Comparator comparator, @ParametricNullness E e) { int cmp = comparator.compare(e, getElement()); if (cmp < 0) { return (left == null) ? 0 : left.count(comparator, e); } else if (cmp > 0) { return (right == null) ? 0 : right.count(comparator, e); } else { return elemCount; } } private AvlNode addRightChild(@ParametricNullness E e, int count) { right = new AvlNode(e, count); successor(this, right, succ()); height = Math.max(2, height); distinctElements++; totalCount += count; return this; } private AvlNode addLeftChild(@ParametricNullness E e, int count) { left = new AvlNode(e, count); successor(pred(), left, this); height = Math.max(2, height); distinctElements++; totalCount += count; return this; } AvlNode add( Comparator comparator, @ParametricNullness E e, int count, int[] result) { /* * It speeds things up considerably to unconditionally add count to totalCount here, * but that destroys failure atomicity in the case of count overflow. =( */ int cmp = comparator.compare(e, getElement()); if (cmp < 0) { AvlNode initLeft = left; if (initLeft == null) { result[0] = 0; return addLeftChild(e, count); } int initHeight = initLeft.height; left = initLeft.add(comparator, e, count, result); if (result[0] == 0) { distinctElements++; } this.totalCount += count; return (left.height == initHeight) ? this : rebalance(); } else if (cmp > 0) { AvlNode initRight = right; if (initRight == null) { result[0] = 0; return addRightChild(e, count); } int initHeight = initRight.height; right = initRight.add(comparator, e, count, result); if (result[0] == 0) { distinctElements++; } this.totalCount += count; return (right.height == initHeight) ? this : rebalance(); } // adding count to me! No rebalance possible. result[0] = elemCount; long resultCount = (long) elemCount + count; checkArgument(resultCount <= Integer.MAX_VALUE); this.elemCount += count; this.totalCount += count; return this; } @CheckForNull AvlNode remove( Comparator comparator, @ParametricNullness E e, int count, int[] result) { int cmp = comparator.compare(e, getElement()); if (cmp < 0) { AvlNode initLeft = left; if (initLeft == null) { result[0] = 0; return this; } left = initLeft.remove(comparator, e, count, result); if (result[0] > 0) { if (count >= result[0]) { this.distinctElements--; this.totalCount -= result[0]; } else { this.totalCount -= count; } } return (result[0] == 0) ? this : rebalance(); } else if (cmp > 0) { AvlNode initRight = right; if (initRight == null) { result[0] = 0; return this; } right = initRight.remove(comparator, e, count, result); if (result[0] > 0) { if (count >= result[0]) { this.distinctElements--; this.totalCount -= result[0]; } else { this.totalCount -= count; } } return rebalance(); } // removing count from me! result[0] = elemCount; if (count >= elemCount) { return deleteMe(); } else { this.elemCount -= count; this.totalCount -= count; return this; } } @CheckForNull AvlNode setCount( Comparator comparator, @ParametricNullness E e, int count, int[] result) { int cmp = comparator.compare(e, getElement()); if (cmp < 0) { AvlNode initLeft = left; if (initLeft == null) { result[0] = 0; return (count > 0) ? addLeftChild(e, count) : this; } left = initLeft.setCount(comparator, e, count, result); if (count == 0 && result[0] != 0) { this.distinctElements--; } else if (count > 0 && result[0] == 0) { this.distinctElements++; } this.totalCount += count - result[0]; return rebalance(); } else if (cmp > 0) { AvlNode initRight = right; if (initRight == null) { result[0] = 0; return (count > 0) ? addRightChild(e, count) : this; } right = initRight.setCount(comparator, e, count, result); if (count == 0 && result[0] != 0) { this.distinctElements--; } else if (count > 0 && result[0] == 0) { this.distinctElements++; } this.totalCount += count - result[0]; return rebalance(); } // setting my count result[0] = elemCount; if (count == 0) { return deleteMe(); } this.totalCount += count - elemCount; this.elemCount = count; return this; } @CheckForNull AvlNode setCount( Comparator comparator, @ParametricNullness E e, int expectedCount, int newCount, int[] result) { int cmp = comparator.compare(e, getElement()); if (cmp < 0) { AvlNode initLeft = left; if (initLeft == null) { result[0] = 0; if (expectedCount == 0 && newCount > 0) { return addLeftChild(e, newCount); } return this; } left = initLeft.setCount(comparator, e, expectedCount, newCount, result); if (result[0] == expectedCount) { if (newCount == 0 && result[0] != 0) { this.distinctElements--; } else if (newCount > 0 && result[0] == 0) { this.distinctElements++; } this.totalCount += newCount - result[0]; } return rebalance(); } else if (cmp > 0) { AvlNode initRight = right; if (initRight == null) { result[0] = 0; if (expectedCount == 0 && newCount > 0) { return addRightChild(e, newCount); } return this; } right = initRight.setCount(comparator, e, expectedCount, newCount, result); if (result[0] == expectedCount) { if (newCount == 0 && result[0] != 0) { this.distinctElements--; } else if (newCount > 0 && result[0] == 0) { this.distinctElements++; } this.totalCount += newCount - result[0]; } return rebalance(); } // setting my count result[0] = elemCount; if (expectedCount == elemCount) { if (newCount == 0) { return deleteMe(); } this.totalCount += newCount - elemCount; this.elemCount = newCount; } return this; } @CheckForNull private AvlNode deleteMe() { int oldElemCount = this.elemCount; this.elemCount = 0; successor(pred(), succ()); if (left == null) { return right; } else if (right == null) { return left; } else if (left.height >= right.height) { AvlNode newTop = pred(); // newTop is the maximum node in my left subtree newTop.left = left.removeMax(newTop); newTop.right = right; newTop.distinctElements = distinctElements - 1; newTop.totalCount = totalCount - oldElemCount; return newTop.rebalance(); } else { AvlNode newTop = succ(); newTop.right = right.removeMin(newTop); newTop.left = left; newTop.distinctElements = distinctElements - 1; newTop.totalCount = totalCount - oldElemCount; return newTop.rebalance(); } } // Removes the minimum node from this subtree to be reused elsewhere @CheckForNull private AvlNode removeMin(AvlNode node) { if (left == null) { return right; } else { left = left.removeMin(node); distinctElements--; totalCount -= node.elemCount; return rebalance(); } } // Removes the maximum node from this subtree to be reused elsewhere @CheckForNull private AvlNode removeMax(AvlNode node) { if (right == null) { return left; } else { right = right.removeMax(node); distinctElements--; totalCount -= node.elemCount; return rebalance(); } } private void recomputeMultiset() { this.distinctElements = 1 + TreeMultiset.distinctElements(left) + TreeMultiset.distinctElements(right); this.totalCount = elemCount + totalCount(left) + totalCount(right); } private void recomputeHeight() { this.height = 1 + Math.max(height(left), height(right)); } private void recompute() { recomputeMultiset(); recomputeHeight(); } private AvlNode rebalance() { switch (balanceFactor()) { case -2: // requireNonNull is safe because right must exist in order to get a negative factor. requireNonNull(right); if (right.balanceFactor() > 0) { right = right.rotateRight(); } return rotateLeft(); case 2: // requireNonNull is safe because left must exist in order to get a positive factor. requireNonNull(left); if (left.balanceFactor() < 0) { left = left.rotateLeft(); } return rotateRight(); default: recomputeHeight(); return this; } } private int balanceFactor() { return height(left) - height(right); } private AvlNode rotateLeft() { checkState(right != null); AvlNode newTop = right; this.right = newTop.left; newTop.left = this; newTop.totalCount = this.totalCount; newTop.distinctElements = this.distinctElements; this.recompute(); newTop.recomputeHeight(); return newTop; } private AvlNode rotateRight() { checkState(left != null); AvlNode newTop = left; this.left = newTop.right; newTop.right = this; newTop.totalCount = this.totalCount; newTop.distinctElements = this.distinctElements; this.recompute(); newTop.recomputeHeight(); return newTop; } private static long totalCount(@CheckForNull AvlNode node) { return (node == null) ? 0 : node.totalCount; } private static int height(@CheckForNull AvlNode node) { return (node == null) ? 0 : node.height; } @CheckForNull private AvlNode ceiling(Comparator comparator, @ParametricNullness E e) { int cmp = comparator.compare(e, getElement()); if (cmp < 0) { return (left == null) ? this : MoreObjects.firstNonNull(left.ceiling(comparator, e), this); } else if (cmp == 0) { return this; } else { return (right == null) ? null : right.ceiling(comparator, e); } } @CheckForNull private AvlNode floor(Comparator comparator, @ParametricNullness E e) { int cmp = comparator.compare(e, getElement()); if (cmp > 0) { return (right == null) ? this : MoreObjects.firstNonNull(right.floor(comparator, e), this); } else if (cmp == 0) { return this; } else { return (left == null) ? null : left.floor(comparator, e); } } @ParametricNullness E getElement() { // For discussion of this cast, see the comment on the elem field. return uncheckedCastNullableTToT(elem); } int getCount() { return elemCount; } @Override public String toString() { return Multisets.immutableEntry(getElement(), getCount()).toString(); } } private static void successor(AvlNode a, AvlNode b) { a.succ = b; b.pred = a; } private static void successor( AvlNode a, AvlNode b, AvlNode c) { successor(a, b); successor(b, c); } /* * TODO(jlevy): Decide whether entrySet() should return entries with an equals() method that * calls the comparator to compare the two keys. If that change is made, * AbstractMultiset.equals() can simply check whether two multisets have equal entry sets. */ /** * @serialData the comparator, the number of distinct elements, the first element, its count, the * second element, its count, and so on */ @J2ktIncompatible @GwtIncompatible // java.io.ObjectOutputStream private void writeObject(ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); stream.writeObject(elementSet().comparator()); Serialization.writeMultiset(this, stream); } @J2ktIncompatible @GwtIncompatible // java.io.ObjectInputStream private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); @SuppressWarnings("unchecked") // reading data stored by writeObject Comparator comparator = (Comparator) stream.readObject(); Serialization.getFieldSetter(AbstractSortedMultiset.class, "comparator").set(this, comparator); Serialization.getFieldSetter(TreeMultiset.class, "range") .set(this, GeneralRange.all(comparator)); Serialization.getFieldSetter(TreeMultiset.class, "rootReference") .set(this, new Reference>()); AvlNode header = new AvlNode<>(); Serialization.getFieldSetter(TreeMultiset.class, "header").set(this, header); successor(header, header); Serialization.populateMultiset(this, stream); } @GwtIncompatible // not needed in emulated source @J2ktIncompatible private static final long serialVersionUID = 1; }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy