All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.util.concurrent.AbstractService Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.google.common.util.concurrent;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.util.concurrent.Service.State.FAILED;
import static com.google.common.util.concurrent.Service.State.NEW;
import static com.google.common.util.concurrent.Service.State.RUNNING;
import static com.google.common.util.concurrent.Service.State.STARTING;
import static com.google.common.util.concurrent.Service.State.STOPPING;
import static com.google.common.util.concurrent.Service.State.TERMINATED;
import com.google.common.annotations.Beta;
import com.google.common.collect.Lists;
import com.google.common.util.concurrent.Monitor.Guard;
// javadoc needs this
import com.google.common.util.concurrent.Service.State;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import javax.annotation.Nullable;
import javax.annotation.concurrent.GuardedBy;
import javax.annotation.concurrent.Immutable;

/**
 *  Base class for implementing services that can handle {@link #doStart} and {@link #doStop}
 *  requests, responding to them with {@link #notifyStarted()} and {@link #notifyStopped()}
 *  callbacks. Its subclasses must manage threads manually; consider
 *  {@link AbstractExecutionThreadService} if you need only a single execution thread.
 *
 *  @author Jesse Wilson
 *  @author Luke Sandberg
 *  @since 1.0
 *
 * @deprecated The Google Guava Core Libraries are deprecated and will not be part of the AEM SDK after April 2023
 */
@Beta
@Deprecated(since = "2022-12-01")
public abstract class AbstractService implements Service {

    private final Monitor monitor = new Monitor();

    private final Transition startup = new Transition();

    private final Transition shutdown = new Transition();

    private final Guard isStartable = new Guard(monitor) {

        @Override
        public boolean isSatisfied() {
            return state() == NEW;
        }
    };

    private final Guard isStoppable = new Guard(monitor) {

        @Override
        public boolean isSatisfied() {
            return state().compareTo(RUNNING) <= 0;
        }
    };

    private final Guard hasReachedRunning = new Guard(monitor) {

        @Override
        public boolean isSatisfied() {
            return state().compareTo(RUNNING) >= 0;
        }
    };

    private final Guard isStopped = new Guard(monitor) {

        @Override
        public boolean isSatisfied() {
            return state().isTerminal();
        }
    };

    /**
     * The listeners to notify during a state transition.
     */
    @GuardedBy("monitor")
    private final List listeners = Lists.newArrayList();

    /**
     * The queue of listeners that are waiting to be executed.
     *
     * 

Enqueue operations should be protected by {@link #monitor} while calling * {@link ExecutionQueue#execute()} should not be protected. */ private final ExecutionQueue queuedListeners = new ExecutionQueue(); /** * The current state of the service. This should be written with the lock held but can be read * without it because it is an immutable object in a volatile field. This is desirable so that * methods like {@link #state}, {@link #failureCause} and notably {@link #toString} can be run * without grabbing the lock. * *

To update this field correctly the lock must be held to guarantee that the state is * consistent. */ @GuardedBy("monitor") private volatile StateSnapshot snapshot = new StateSnapshot(NEW); /** * Constructor for use by subclasses. */ protected AbstractService() { // Add a listener to update the futures. This needs to be added first so that it is executed // before the other listeners. This way the other listeners can access the completed futures. addListener(new Listener() { @Override public void running() { startup.set(RUNNING); } @Override public void stopping(State from) { if (from == STARTING) { startup.set(STOPPING); } } @Override public void terminated(State from) { if (from == NEW) { startup.set(TERMINATED); } shutdown.set(TERMINATED); } @Override public void failed(State from, Throwable failure) { switch(from) { case STARTING: startup.setException(failure); shutdown.setException(new Exception("Service failed to start.", failure)); break; case RUNNING: shutdown.setException(new Exception("Service failed while running", failure)); break; case STOPPING: shutdown.setException(failure); break; case TERMINATED: /* fall-through */ case FAILED: /* fall-through */ case NEW: /* fall-through */ default: throw new AssertionError("Unexpected from state: " + from); } } }, MoreExecutors.sameThreadExecutor()); } /** * This method is called by {@link #start} to initiate service startup. The invocation of this * method should cause a call to {@link #notifyStarted()}, either during this method's run, or * after it has returned. If startup fails, the invocation should cause a call to * {@link #notifyFailed(Throwable)} instead. * *

This method should return promptly; prefer to do work on a different thread where it is * convenient. It is invoked exactly once on service startup, even when {@link #start} is called * multiple times. */ protected abstract void doStart(); /** * This method should be used to initiate service shutdown. The invocation of this method should * cause a call to {@link #notifyStopped()}, either during this method's run, or after it has * returned. If shutdown fails, the invocation should cause a call to * {@link #notifyFailed(Throwable)} instead. * *

This method should return promptly; prefer to do work on a different thread where it is * convenient. It is invoked exactly once on service shutdown, even when {@link #stop} is called * multiple times. */ protected abstract void doStop(); @Override public final Service startAsync() { if (monitor.enterIf(isStartable)) { try { snapshot = new StateSnapshot(STARTING); starting(); doStart(); // TODO(user): justify why we are catching Throwable and not RuntimeException } catch (Throwable startupFailure) { notifyFailed(startupFailure); } finally { monitor.leave(); executeListeners(); } } else { throw new IllegalStateException("Service " + this + " has already been started"); } return this; } @Deprecated @Override public final ListenableFuture start() { if (monitor.enterIf(isStartable)) { try { snapshot = new StateSnapshot(STARTING); starting(); doStart(); } catch (Throwable startupFailure) { notifyFailed(startupFailure); } finally { monitor.leave(); executeListeners(); } } return startup; } @Override public final Service stopAsync() { stop(); return this; } @Deprecated @Override public final ListenableFuture stop() { if (monitor.enterIf(isStoppable)) { try { State previous = state(); switch(previous) { case NEW: snapshot = new StateSnapshot(TERMINATED); terminated(NEW); break; case STARTING: snapshot = new StateSnapshot(STARTING, true, null); stopping(STARTING); break; case RUNNING: snapshot = new StateSnapshot(STOPPING); stopping(RUNNING); doStop(); break; case STOPPING: case TERMINATED: case FAILED: // These cases are impossible due to the if statement above. throw new AssertionError("isStoppable is incorrectly implemented, saw: " + previous); default: throw new AssertionError("Unexpected state: " + previous); } // TODO(user): justify why we are catching Throwable and not RuntimeException. Also, we // may inadvertently catch our AssertionErrors. } catch (Throwable shutdownFailure) { notifyFailed(shutdownFailure); } finally { monitor.leave(); executeListeners(); } } return shutdown; } @Deprecated @Override public State startAndWait() { return Futures.getUnchecked(start()); } @Deprecated @Override public State stopAndWait() { return Futures.getUnchecked(stop()); } @Override public final void awaitRunning() { monitor.enterWhenUninterruptibly(hasReachedRunning); try { checkCurrentState(RUNNING); } finally { monitor.leave(); } } @Override public final void awaitRunning(long timeout, TimeUnit unit) throws TimeoutException { if (monitor.enterWhenUninterruptibly(hasReachedRunning, timeout, unit)) { try { checkCurrentState(RUNNING); } finally { monitor.leave(); } } else { // It is possible due to races the we are currently in the expected state even though we // timed out. e.g. if we weren't event able to grab the lock within the timeout we would never // even check the guard. I don't think we care too much about this use case but it could lead // to a confusing error message. throw new TimeoutException("Timed out waiting for " + this + " to reach the RUNNING state. " + "Current state: " + state()); } } @Override public final void awaitTerminated() { monitor.enterWhenUninterruptibly(isStopped); try { checkCurrentState(TERMINATED); } finally { monitor.leave(); } } @Override public final void awaitTerminated(long timeout, TimeUnit unit) throws TimeoutException { if (monitor.enterWhenUninterruptibly(isStopped, timeout, unit)) { try { State state = state(); checkCurrentState(TERMINATED); } finally { monitor.leave(); } } else { // It is possible due to races the we are currently in the expected state even though we // timed out. e.g. if we weren't event able to grab the lock within the timeout we would never // even check the guard. I don't think we care too much about this use case but it could lead // to a confusing error message. throw new TimeoutException("Timed out waiting for " + this + " to reach a terminal state. " + "Current state: " + state()); } } /** * Checks that the current state is equal to the expected state. */ @GuardedBy("monitor") private void checkCurrentState(State expected) { State actual = state(); if (actual != expected) { if (actual == FAILED) { // Handle this specially so that we can include the failureCause, if there is one. throw new IllegalStateException("Expected the service to be " + expected + ", but the service has FAILED", failureCause()); } throw new IllegalStateException("Expected the service to be " + expected + ", but was " + actual); } } /** * Implementing classes should invoke this method once their service has started. It will cause * the service to transition from {@link State#STARTING} to {@link State#RUNNING}. * * @throws IllegalStateException if the service is not {@link State#STARTING}. */ protected final void notifyStarted() { monitor.enter(); try { // We have to examine the internal state of the snapshot here to properly handle the stop // while starting case. if (snapshot.state != STARTING) { IllegalStateException failure = new IllegalStateException("Cannot notifyStarted() when the service is " + snapshot.state); notifyFailed(failure); throw failure; } if (snapshot.shutdownWhenStartupFinishes) { snapshot = new StateSnapshot(STOPPING); // We don't call listeners here because we already did that when we set the // shutdownWhenStartupFinishes flag. doStop(); } else { snapshot = new StateSnapshot(RUNNING); running(); } } finally { monitor.leave(); executeListeners(); } } /** * Implementing classes should invoke this method once their service has stopped. It will cause * the service to transition from {@link State#STOPPING} to {@link State#TERMINATED}. * * @throws IllegalStateException if the service is neither {@link State#STOPPING} nor * {@link State#RUNNING}. */ protected final void notifyStopped() { monitor.enter(); try { // We check the internal state of the snapshot instead of state() directly so we don't allow // notifyStopped() to be called while STARTING, even if stop() has already been called. State previous = snapshot.state; if (previous != STOPPING && previous != RUNNING) { IllegalStateException failure = new IllegalStateException("Cannot notifyStopped() when the service is " + previous); notifyFailed(failure); throw failure; } snapshot = new StateSnapshot(TERMINATED); terminated(previous); } finally { monitor.leave(); executeListeners(); } } /** * Invoke this method to transition the service to the {@link State#FAILED}. The service will * not be stopped if it is running. Invoke this method when a service has failed critically * or otherwise cannot be started nor stopped. */ protected final void notifyFailed(Throwable cause) { checkNotNull(cause); monitor.enter(); try { State previous = state(); switch(previous) { case NEW: case TERMINATED: throw new IllegalStateException("Failed while in state:" + previous, cause); case RUNNING: case STARTING: case STOPPING: snapshot = new StateSnapshot(FAILED, false, cause); failed(previous, cause); break; case FAILED: // Do nothing break; default: throw new AssertionError("Unexpected state: " + previous); } } finally { monitor.leave(); executeListeners(); } } @Override public final boolean isRunning() { return state() == RUNNING; } @Override public final State state() { return snapshot.externalState(); } /** * @since 14.0 */ @Override public final Throwable failureCause() { return snapshot.failureCause(); } /** * @since 13.0 */ @Override public final void addListener(Listener listener, Executor executor) { checkNotNull(listener, "listener"); checkNotNull(executor, "executor"); monitor.enter(); try { State currentState = state(); if (currentState != TERMINATED && currentState != FAILED) { listeners.add(new ListenerExecutorPair(listener, executor)); } } finally { monitor.leave(); } } @Override public String toString() { return getClass().getSimpleName() + " [" + state() + "]"; } /** * A change from one service state to another, plus the result of the change. * * @deprecated The Google Guava Core Libraries are deprecated and will not be part of the AEM SDK after April 2023 */ @Deprecated(since = "2022-12-01") private class Transition extends AbstractFuture { @Override public State get(long timeout, TimeUnit unit) throws InterruptedException, TimeoutException, ExecutionException { try { return super.get(timeout, unit); } catch (TimeoutException e) { throw new TimeoutException(AbstractService.this.toString()); } } } /** * Attempts to execute all the listeners in {@link #queuedListeners} while not holding the * {@link #monitor}. */ private void executeListeners() { if (!monitor.isOccupiedByCurrentThread()) { queuedListeners.execute(); } } @GuardedBy("monitor") private void starting() { for (final ListenerExecutorPair pair : listeners) { queuedListeners.add(new Runnable() { @Override public void run() { pair.listener.starting(); } }, pair.executor); } } @GuardedBy("monitor") private void running() { for (final ListenerExecutorPair pair : listeners) { queuedListeners.add(new Runnable() { @Override public void run() { pair.listener.running(); } }, pair.executor); } } @GuardedBy("monitor") private void stopping(final State from) { for (final ListenerExecutorPair pair : listeners) { queuedListeners.add(new Runnable() { @Override public void run() { pair.listener.stopping(from); } }, pair.executor); } } @GuardedBy("monitor") private void terminated(final State from) { for (final ListenerExecutorPair pair : listeners) { queuedListeners.add(new Runnable() { @Override public void run() { pair.listener.terminated(from); } }, pair.executor); } // There are no more state transitions so we can clear this out. listeners.clear(); } @GuardedBy("monitor") private void failed(final State from, final Throwable cause) { for (final ListenerExecutorPair pair : listeners) { queuedListeners.add(new Runnable() { @Override public void run() { pair.listener.failed(from, cause); } }, pair.executor); } // There are no more state transitions so we can clear this out. listeners.clear(); } /** * A simple holder for a listener and its executor. * @deprecated The Google Guava Core Libraries are deprecated and will not be part of the AEM SDK after April 2023 */ @Deprecated(since = "2022-12-01") private static class ListenerExecutorPair { final Listener listener; final Executor executor; ListenerExecutorPair(Listener listener, Executor executor) { this.listener = listener; this.executor = executor; } } /** * An immutable snapshot of the current state of the service. This class represents a consistent * snapshot of the state and therefore it can be used to answer simple queries without needing to * grab a lock. * * @deprecated The Google Guava Core Libraries are deprecated and will not be part of the AEM SDK after April 2023 */ @Immutable @Deprecated(since = "2022-12-01") private static final class StateSnapshot { /** * The internal state, which equals external state unless * shutdownWhenStartupFinishes is true. */ final State state; /** * If true, the user requested a shutdown while the service was still starting * up. */ final boolean shutdownWhenStartupFinishes; /** * The exception that caused this service to fail. This will be {@code null} * unless the service has failed. */ @Nullable final Throwable failure; StateSnapshot(State internalState) { this(internalState, false, null); } StateSnapshot(State internalState, boolean shutdownWhenStartupFinishes, @Nullable Throwable failure) { checkArgument(!shutdownWhenStartupFinishes || internalState == STARTING, "shudownWhenStartupFinishes can only be set if state is STARTING. Got %s instead.", internalState); checkArgument(!(failure != null ^ internalState == FAILED), "A failure cause should be set if and only if the state is failed. Got %s and %s " + "instead.", internalState, failure); this.state = internalState; this.shutdownWhenStartupFinishes = shutdownWhenStartupFinishes; this.failure = failure; } /** * @see Service#state() */ State externalState() { if (shutdownWhenStartupFinishes && state == STARTING) { return STOPPING; } else { return state; } } /** * @see Service#failureCause() */ Throwable failureCause() { checkState(state == FAILED, "failureCause() is only valid if the service has failed, service is %s", state); return failure; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy