All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.collections4.ListUtils Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.collections4;

import java.util.AbstractList;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;

import org.apache.commons.collections4.bag.HashBag;
import org.apache.commons.collections4.functors.DefaultEquator;
import org.apache.commons.collections4.list.FixedSizeList;
import org.apache.commons.collections4.list.LazyList;
import org.apache.commons.collections4.list.PredicatedList;
import org.apache.commons.collections4.list.TransformedList;
import org.apache.commons.collections4.list.UnmodifiableList;
import org.apache.commons.collections4.sequence.CommandVisitor;
import org.apache.commons.collections4.sequence.EditScript;
import org.apache.commons.collections4.sequence.SequencesComparator;

/**
 * Provides utility methods and decorators for {@link List} instances.
 *
 * @since 1.0
 */
public class ListUtils {

    /**
     * ListUtils should not normally be instantiated.
     */
    private ListUtils() {}

    //-----------------------------------------------------------------------

    /**
     * Returns an immutable empty list if the argument is null,
     * or the argument itself otherwise.
     *
     * @param  the element type
     * @param list the list, possibly null
     * @return an empty list if the argument is null
     */
    public static  List emptyIfNull(final List list) {
        return list == null ? Collections.emptyList() : list;
    }

    /**
     * Returns either the passed in list, or if the list is {@code null},
     * the value of {@code defaultList}.
     *
     * @param  the element type
     * @param list  the list, possibly {@code null}
     * @param defaultList  the returned values if list is {@code null}
     * @return an empty list if the argument is null
     * @since 4.0
     */
    public static  List defaultIfNull(final List list, final List defaultList) {
        return list == null ? defaultList : list;
    }

    /**
     * Returns a new list containing all elements that are contained in
     * both given lists.
     *
     * @param  the element type
     * @param list1  the first list
     * @param list2  the second list
     * @return  the intersection of those two lists
     * @throws NullPointerException if either list is null
     */
    public static  List intersection(final List list1, final List list2) {
        final List result = new ArrayList<>();

        List smaller = list1;
        List larger = list2;
        if (list1.size() > list2.size()) {
            smaller = list2;
            larger = list1;
        }

        final HashSet hashSet = new HashSet<>(smaller);

        for (final E e : larger) {
            if (hashSet.contains(e)) {
                result.add(e);
                hashSet.remove(e);
            }
        }
        return result;
    }

    /**
     * Subtracts all elements in the second list from the first list,
     * placing the results in a new list.
     * 

* This differs from {@link List#removeAll(Collection)} in that * cardinality is respected; if list1 contains two * occurrences of null and list2 only * contains one occurrence, then the returned list will still contain * one occurrence. * * @param the element type * @param list1 the list to subtract from * @param list2 the list to subtract * @return a new list containing the results * @throws NullPointerException if either list is null */ public static List subtract(final List list1, final List list2) { final ArrayList result = new ArrayList<>(); final HashBag bag = new HashBag<>(list2); for (final E e : list1) { if (!bag.remove(e, 1)) { result.add(e); } } return result; } /** * Returns the sum of the given lists. This is their intersection * subtracted from their union. * * @param the element type * @param list1 the first list * @param list2 the second list * @return a new list containing the sum of those lists * @throws NullPointerException if either list is null */ public static List sum(final List list1, final List list2) { return subtract(union(list1, list2), intersection(list1, list2)); } /** * Returns a new list containing the second list appended to the * first list. The {@link List#addAll(Collection)} operation is * used to append the two given lists into a new list. * * @param the element type * @param list1 the first list * @param list2 the second list * @return a new list containing the union of those lists * @throws NullPointerException if either list is null */ public static List union(final List list1, final List list2) { final ArrayList result = new ArrayList<>(list1.size() + list2.size()); result.addAll(list1); result.addAll(list2); return result; } /** * Selects all elements from input collection which match the given * predicate into an output list. *

* A null predicate matches no elements. * * @param the element type * @param inputCollection the collection to get the input from, may not be null * @param predicate the predicate to use, may be null * @return the elements matching the predicate (new list) * @throws NullPointerException if the input list is null * * @since 4.0 * @see CollectionUtils#select(Iterable, Predicate) */ public static List select(final Collection inputCollection, final Predicate predicate) { return CollectionUtils.select(inputCollection, predicate, new ArrayList(inputCollection.size())); } /** * Selects all elements from inputCollection which don't match the given * predicate into an output collection. *

* If the input predicate is null, the result is an empty list. * * @param the element type * @param inputCollection the collection to get the input from, may not be null * @param predicate the predicate to use, may be null * @return the elements not matching the predicate (new list) * @throws NullPointerException if the input collection is null * * @since 4.0 * @see CollectionUtils#selectRejected(Iterable, Predicate) */ public static List selectRejected(final Collection inputCollection, final Predicate predicate) { return CollectionUtils.selectRejected(inputCollection, predicate, new ArrayList(inputCollection.size())); } /** * Tests two lists for value-equality as per the equality contract in * {@link java.util.List#equals(java.lang.Object)}. *

* This method is useful for implementing List when you cannot * extend AbstractList. The method takes Collection instances to enable other * collection types to use the List implementation algorithm. *

* The relevant text (slightly paraphrased as this is a static method) is: *

* Compares the two list objects for equality. Returns * {@code true} if and only if both * lists have the same size, and all corresponding pairs of elements in * the two lists are equal. (Two elements {@code e1} and * {@code e2} are equal if (e1==null ? e2==null : * e1.equals(e2)).) In other words, two lists are defined to be * equal if they contain the same elements in the same order. This * definition ensures that the equals method works properly across * different implementations of the {@code List} interface. *
* * Note: The behaviour of this method is undefined if the lists are * modified during the equals comparison. * * @see java.util.List * @param list1 the first list, may be null * @param list2 the second list, may be null * @return whether the lists are equal by value comparison */ public static boolean isEqualList(final Collection list1, final Collection list2) { if (list1 == list2) { return true; } if (list1 == null || list2 == null || list1.size() != list2.size()) { return false; } final Iterator it1 = list1.iterator(); final Iterator it2 = list2.iterator(); Object obj1 = null; Object obj2 = null; while (it1.hasNext() && it2.hasNext()) { obj1 = it1.next(); obj2 = it2.next(); if (!(obj1 == null ? obj2 == null : obj1.equals(obj2))) { return false; } } return !(it1.hasNext() || it2.hasNext()); } /** * Generates a hash code using the algorithm specified in * {@link java.util.List#hashCode()}. *

* This method is useful for implementing List when you cannot * extend AbstractList. The method takes Collection instances to enable other * collection types to use the List implementation algorithm. * * @see java.util.List#hashCode() * @param list the list to generate the hashCode for, may be null * @return the hash code */ public static int hashCodeForList(final Collection list) { if (list == null) { return 0; } int hashCode = 1; final Iterator it = list.iterator(); while (it.hasNext()) { final Object obj = it.next(); hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode()); } return hashCode; } //----------------------------------------------------------------------- /** * Returns a List containing all the elements in collection * that are also in retain. The cardinality of an element e * in the returned list is the same as the cardinality of e * in collection unless retain does not contain e, in which * case the cardinality is zero. This method is useful if you do not wish to modify * the collection c and thus cannot call collection.retainAll(retain);. *

* This implementation iterates over collection, checking each element in * turn to see if it's contained in retain. If it's contained, it's added * to the returned list. As a consequence, it is advised to use a collection type for * retain that provides a fast (e.g. O(1)) implementation of * {@link Collection#contains(Object)}. * * @param the element type * @param collection the collection whose contents are the target of the #retailAll operation * @param retain the collection containing the elements to be retained in the returned collection * @return a List containing all the elements of c * that occur at least once in retain. * @throws NullPointerException if either parameter is null * @since 3.2 */ public static List retainAll(final Collection collection, final Collection retain) { final List list = new ArrayList<>(Math.min(collection.size(), retain.size())); for (final E obj : collection) { if (retain.contains(obj)) { list.add(obj); } } return list; } /** * Removes the elements in remove from collection. That is, this * method returns a list containing all the elements in collection * that are not in remove. The cardinality of an element e * in the returned collection is the same as the cardinality of e * in collection unless remove contains e, in which * case the cardinality is zero. This method is useful if you do not wish to modify * collection and thus cannot call collection.removeAll(remove);. *

* This implementation iterates over collection, checking each element in * turn to see if it's contained in remove. If it's not contained, it's added * to the returned list. As a consequence, it is advised to use a collection type for * remove that provides a fast (e.g. O(1)) implementation of * {@link Collection#contains(Object)}. * * @param the element type * @param collection the collection from which items are removed (in the returned collection) * @param remove the items to be removed from the returned collection * @return a List containing all the elements of c except * any elements that also occur in remove. * @throws NullPointerException if either parameter is null * @since 3.2 */ public static List removeAll(final Collection collection, final Collection remove) { final List list = new ArrayList<>(); for (final E obj : collection) { if (!remove.contains(obj)) { list.add(obj); } } return list; } //----------------------------------------------------------------------- /** * Returns a synchronized list backed by the given list. *

* You must manually synchronize on the returned list's iterator to * avoid non-deterministic behavior: * *

     * List list = ListUtils.synchronizedList(myList);
     * synchronized (list) {
     *     Iterator i = list.iterator();
     *     while (i.hasNext()) {
     *         process (i.next());
     *     }
     * }
     * 
* * This method is just a wrapper for {@link Collections#synchronizedList(List)}. * * @param the element type * @param list the list to synchronize, must not be null * @return a synchronized list backed by the given list * @throws NullPointerException if the list is null */ public static List synchronizedList(final List list) { return Collections.synchronizedList(list); } /** * Returns an unmodifiable list backed by the given list. *

* This method uses the implementation in the decorators subpackage. * * @param the element type * @param list the list to make unmodifiable, must not be null * @return an unmodifiable list backed by the given list * @throws NullPointerException if the list is null */ public static List unmodifiableList(final List list) { return UnmodifiableList.unmodifiableList(list); } /** * Returns a predicated (validating) list backed by the given list. *

* Only objects that pass the test in the given predicate can be added to the list. * Trying to add an invalid object results in an IllegalArgumentException. * It is important not to use the original list after invoking this method, * as it is a backdoor for adding invalid objects. * * @param the element type * @param list the list to predicate, must not be null * @param predicate the predicate for the list, must not be null * @return a predicated list backed by the given list * @throws NullPointerException if the List or Predicate is null */ public static List predicatedList(final List list, final Predicate predicate) { return PredicatedList.predicatedList(list, predicate); } /** * Returns a transformed list backed by the given list. *

* This method returns a new list (decorating the specified list) that * will transform any new entries added to it. * Existing entries in the specified list will not be transformed. *

* Each object is passed through the transformer as it is added to the * List. It is important not to use the original list after invoking this * method, as it is a backdoor for adding untransformed objects. *

* Existing entries in the specified list will not be transformed. * If you want that behaviour, see {@link TransformedList#transformedList}. * * @param the element type * @param list the list to predicate, must not be null * @param transformer the transformer for the list, must not be null * @return a transformed list backed by the given list * @throws NullPointerException if the List or Transformer is null */ public static List transformedList(final List list, final Transformer transformer) { return TransformedList.transformingList(list, transformer); } /** * Returns a "lazy" list whose elements will be created on demand. *

* When the index passed to the returned list's {@link List#get(int) get} * method is greater than the list's size, then the factory will be used * to create a new object and that object will be inserted at that index. *

* For instance: * *

     * Factory<Date> factory = new Factory<Date>() {
     *     public Date create() {
     *         return new Date();
     *     }
     * }
     * List<Date> lazy = ListUtils.lazyList(new ArrayList<Date>(), factory);
     * Date date = lazy.get(3);
     * 
* * After the above code is executed, date will refer to * a new Date instance. Furthermore, that Date * instance is the fourth element in the list. The first, second, * and third element are all set to null. * * @param the element type * @param list the list to make lazy, must not be null * @param factory the factory for creating new objects, must not be null * @return a lazy list backed by the given list * @throws NullPointerException if the List or Factory is null */ public static List lazyList(final List list, final Factory factory) { return LazyList.lazyList(list, factory); } /** * Returns a "lazy" list whose elements will be created on demand. *

* When the index passed to the returned list's {@link List#get(int) get} * method is greater than the list's size, then the transformer will be used * to create a new object and that object will be inserted at that index. *

* For instance: * *

     * List<Integer> hours = Arrays.asList(7, 5, 8, 2);
     * Transformer<Integer,Date> transformer = input -> LocalDateTime.now().withHour(hours.get(input));
     * List<LocalDateTime> lazy = ListUtils.lazyList(new ArrayList<LocalDateTime>(), transformer);
     * Date date = lazy.get(3);
     * 
* * After the above code is executed, date will refer to * a new Date instance. Furthermore, that Date * instance is the fourth element in the list. The first, second, * and third element are all set to null. * * @param the element type * @param list the list to make lazy, must not be null * @param transformer the transformer for creating new objects, must not be null * @return a lazy list backed by the given list * @throws NullPointerException if the List or Transformer is null */ public static List lazyList(final List list, final Transformer transformer) { return LazyList.lazyList(list, transformer); } /** * Returns a fixed-sized list backed by the given list. * Elements may not be added or removed from the returned list, but * existing elements can be changed (for instance, via the * {@link List#set(int, Object)} method). * * @param the element type * @param list the list whose size to fix, must not be null * @return a fixed-size list backed by that list * @throws NullPointerException if the List is null */ public static List fixedSizeList(final List list) { return FixedSizeList.fixedSizeList(list); } //----------------------------------------------------------------------- /** * Finds the first index in the given List which matches the given predicate. *

* If the input List or predicate is null, or no element of the List * matches the predicate, -1 is returned. * * @param the element type * @param list the List to search, may be null * @param predicate the predicate to use, may be null * @return the first index of an Object in the List which matches the predicate or -1 if none could be found */ public static int indexOf(final List list, final Predicate predicate) { if (list != null && predicate != null) { for (int i = 0; i < list.size(); i++) { final E item = list.get(i); if (predicate.evaluate(item)) { return i; } } } return -1; } //----------------------------------------------------------------------- /** * Returns the longest common subsequence (LCS) of two sequences (lists). * * @param the element type * @param a the first list * @param b the second list * @return the longest common subsequence * @throws NullPointerException if either list is {@code null} * @since 4.0 */ public static List longestCommonSubsequence(final List a, final List b) { return longestCommonSubsequence( a, b, DefaultEquator.defaultEquator() ); } /** * Returns the longest common subsequence (LCS) of two sequences (lists). * * @param the element type * @param a the first list * @param b the second list * @param equator the equator used to test object equality * @return the longest common subsequence * @throws NullPointerException if either list or the equator is {@code null} * @since 4.0 */ public static List longestCommonSubsequence(final List a, final List b, final Equator equator) { if (a == null || b == null) { throw new NullPointerException("List must not be null"); } if (equator == null) { throw new NullPointerException("Equator must not be null"); } final SequencesComparator comparator = new SequencesComparator<>(a, b, equator); final EditScript script = comparator.getScript(); final LcsVisitor visitor = new LcsVisitor<>(); script.visit(visitor); return visitor.getSubSequence(); } /** * Returns the longest common subsequence (LCS) of two {@link CharSequence} objects. *

* This is a convenience method for using {@link #longestCommonSubsequence(List, List)} * with {@link CharSequence} instances. * * @param a the first sequence * @param b the second sequence * @return the longest common subsequence as {@link String} * @throws NullPointerException if either sequence is {@code null} * @since 4.0 */ public static String longestCommonSubsequence(final CharSequence a, final CharSequence b) { if (a == null || b == null) { throw new NullPointerException("CharSequence must not be null"); } final List lcs = longestCommonSubsequence(new CharSequenceAsList( a ), new CharSequenceAsList( b )); final StringBuilder sb = new StringBuilder(); for ( final Character ch : lcs ) { sb.append(ch); } return sb.toString(); } /** * A helper class used to construct the longest common subsequence. */ private static final class LcsVisitor implements CommandVisitor { private final ArrayList sequence; public LcsVisitor() { sequence = new ArrayList<>(); } @Override public void visitInsertCommand(final E object) {} @Override public void visitDeleteCommand(final E object) {} @Override public void visitKeepCommand(final E object) { sequence.add(object); } public List getSubSequence() { return sequence; } } /** * A simple wrapper to use a CharSequence as List. */ private static final class CharSequenceAsList extends AbstractList { private final CharSequence sequence; public CharSequenceAsList(final CharSequence sequence) { this.sequence = sequence; } @Override public Character get( final int index ) { return Character.valueOf(sequence.charAt( index )); } @Override public int size() { return sequence.length(); } } //----------------------------------------------------------------------- /** * Returns consecutive {@link List#subList(int, int) sublists} of a * list, each of the same size (the final list may be smaller). For example, * partitioning a list containing {@code [a, b, c, d, e]} with a partition * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing * two inner lists of three and two elements, all in the original order. *

* The outer list is unmodifiable, but reflects the latest state of the * source list. The inner lists are sublist views of the original list, * produced on demand using {@link List#subList(int, int)}, and are subject * to all the usual caveats about modification as explained in that API. *

* Adapted from http://code.google.com/p/guava-libraries/ * * @param the element type * @param list the list to return consecutive sublists of * @param size the desired size of each sublist (the last may be smaller) * @return a list of consecutive sublists * @throws NullPointerException if list is null * @throws IllegalArgumentException if size is not strictly positive * @since 4.0 */ public static List> partition(final List list, final int size) { if (list == null) { throw new NullPointerException("List must not be null"); } if (size <= 0) { throw new IllegalArgumentException("Size must be greater than 0"); } return new Partition<>(list, size); } /** * Provides a partition view on a {@link List}. * @since 4.0 */ private static class Partition extends AbstractList> { private final List list; private final int size; private Partition(final List list, final int size) { this.list = list; this.size = size; } @Override public List get(final int index) { final int listSize = size(); if (index < 0) { throw new IndexOutOfBoundsException("Index " + index + " must not be negative"); } if (index >= listSize) { throw new IndexOutOfBoundsException("Index " + index + " must be less than size " + listSize); } final int start = index * size; final int end = Math.min(start + size, list.size()); return list.subList(start, end); } @Override public int size() { return (int) Math.ceil((double) list.size() / (double) size); } @Override public boolean isEmpty() { return list.isEmpty(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy