All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.analysis.integration.TrapezoidIntegrator Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.analysis.integration;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * Implements the 
 * Trapezoidal Rule for integration of real univariate functions. For
 * reference, see Introduction to Numerical Analysis, ISBN 038795452X,
 * chapter 3.
 * 

* The function should be integrable.

* * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $ * @since 1.2 */ public class TrapezoidIntegrator extends UnivariateRealIntegratorImpl { /** Intermediate result. */ private double s; /** * Construct an integrator for the given function. * * @param f function to integrate * @deprecated as of 2.0 the integrand function is passed as an argument * to the {@link #integrate(UnivariateRealFunction, double, double)}method. */ @Deprecated public TrapezoidIntegrator(UnivariateRealFunction f) { super(f, 64); } /** * Construct an integrator. */ public TrapezoidIntegrator() { super(64); } /** * Compute the n-th stage integral of trapezoid rule. This function * should only be called by API integrate() in the package. * To save time it does not verify arguments - caller does. *

* The interval is divided equally into 2^n sections rather than an * arbitrary m sections because this configuration can best utilize the * alrealy computed values.

* * @param f the integrand function * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the stage of 1/2 refinement, n = 0 is no refinement * @return the value of n-th stage integral * @throws FunctionEvaluationException if an error occurs evaluating the function */ double stage(final UnivariateRealFunction f, final double min, final double max, final int n) throws FunctionEvaluationException { if (n == 0) { s = 0.5 * (max - min) * (f.value(min) + f.value(max)); return s; } else { final long np = 1L << (n-1); // number of new points in this stage double sum = 0; final double spacing = (max - min) / np; // spacing between adjacent new points double x = min + 0.5 * spacing; // the first new point for (long i = 0; i < np; i++) { sum += f.value(x); x += spacing; } // add the new sum to previously calculated result s = 0.5 * (s + sum * spacing); return s; } } /** {@inheritDoc} */ @Deprecated public double integrate(final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException, IllegalArgumentException { return integrate(f, min, max); } /** {@inheritDoc} */ public double integrate(final UnivariateRealFunction f, final double min, final double max) throws MaxIterationsExceededException, FunctionEvaluationException, IllegalArgumentException { clearResult(); verifyInterval(min, max); verifyIterationCount(); double oldt = stage(f, min, max, 0); for (int i = 1; i <= maximalIterationCount; ++i) { final double t = stage(f, min, max, i); if (i >= minimalIterationCount) { final double delta = FastMath.abs(t - oldt); final double rLimit = relativeAccuracy * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5; if ((delta <= rLimit) || (delta <= absoluteAccuracy)) { setResult(t, i); return result; } } oldt = t; } throw new MaxIterationsExceededException(maximalIterationCount); } /** {@inheritDoc} */ @Override protected void verifyIterationCount() throws IllegalArgumentException { super.verifyIterationCount(); // at most 64 bisection refinements if (maximalIterationCount > 64) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.INVALID_ITERATIONS_LIMITS, 0, 64); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy