All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.ode.nonstiff.AdamsIntegrator Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.ode.nonstiff;

import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.ode.DerivativeException;
import org.apache.commons.math.ode.FirstOrderDifferentialEquations;
import org.apache.commons.math.ode.IntegratorException;
import org.apache.commons.math.ode.MultistepIntegrator;


/** Base class for {@link AdamsBashforthIntegrator Adams-Bashforth} and
 * {@link AdamsMoultonIntegrator Adams-Moulton} integrators.
 * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
 * @since 2.0
 */
public abstract class AdamsIntegrator extends MultistepIntegrator {

    /** Transformer. */
    private final AdamsNordsieckTransformer transformer;

    /**
     * Build an Adams integrator with the given order and step control prameters.
     * @param name name of the method
     * @param nSteps number of steps of the method excluding the one being computed
     * @param order order of the method
     * @param minStep minimal step (must be positive even for backward
     * integration), the last step can be smaller than this
     * @param maxStep maximal step (must be positive even for backward
     * integration)
     * @param scalAbsoluteTolerance allowed absolute error
     * @param scalRelativeTolerance allowed relative error
     * @exception IllegalArgumentException if order is 1 or less
     */
    public AdamsIntegrator(final String name, final int nSteps, final int order,
                           final double minStep, final double maxStep,
                           final double scalAbsoluteTolerance,
                           final double scalRelativeTolerance)
        throws IllegalArgumentException {
        super(name, nSteps, order, minStep, maxStep,
              scalAbsoluteTolerance, scalRelativeTolerance);
        transformer = AdamsNordsieckTransformer.getInstance(nSteps);
    }

    /**
     * Build an Adams integrator with the given order and step control parameters.
     * @param name name of the method
     * @param nSteps number of steps of the method excluding the one being computed
     * @param order order of the method
     * @param minStep minimal step (must be positive even for backward
     * integration), the last step can be smaller than this
     * @param maxStep maximal step (must be positive even for backward
     * integration)
     * @param vecAbsoluteTolerance allowed absolute error
     * @param vecRelativeTolerance allowed relative error
     * @exception IllegalArgumentException if order is 1 or less
     */
    public AdamsIntegrator(final String name, final int nSteps, final int order,
                           final double minStep, final double maxStep,
                           final double[] vecAbsoluteTolerance,
                           final double[] vecRelativeTolerance)
        throws IllegalArgumentException {
        super(name, nSteps, order, minStep, maxStep,
              vecAbsoluteTolerance, vecRelativeTolerance);
        transformer = AdamsNordsieckTransformer.getInstance(nSteps);
    }

    /** {@inheritDoc} */
    @Override
    public abstract double integrate(final FirstOrderDifferentialEquations equations,
                                     final double t0, final double[] y0,
                                     final double t, final double[] y)
        throws DerivativeException, IntegratorException;

    /** {@inheritDoc} */
    @Override
    protected Array2DRowRealMatrix initializeHighOrderDerivatives(final double[] first,
                                                        final double[][] multistep) {
        return transformer.initializeHighOrderDerivatives(first, multistep);
    }

    /** Update the high order scaled derivatives for Adams integrators (phase 1).
     * 

The complete update of high order derivatives has a form similar to: *

     * rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
     * 
* this method computes the P-1 A P rn part.

* @param highOrder high order scaled derivatives * (h2/2 y'', ... hk/k! y(k)) * @return updated high order derivatives * @see #updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix) */ public Array2DRowRealMatrix updateHighOrderDerivativesPhase1(final Array2DRowRealMatrix highOrder) { return transformer.updateHighOrderDerivativesPhase1(highOrder); } /** Update the high order scaled derivatives Adams integrators (phase 2). *

The complete update of high order derivatives has a form similar to: *

     * rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
     * 
* this method computes the (s1(n) - s1(n+1)) P-1 u part.

*

Phase 1 of the update must already have been performed.

* @param start first order scaled derivatives at step start * @param end first order scaled derivatives at step end * @param highOrder high order scaled derivatives, will be modified * (h2/2 y'', ... hk/k! y(k)) * @see #updateHighOrderDerivativesPhase1(Array2DRowRealMatrix) */ public void updateHighOrderDerivativesPhase2(final double[] start, final double[] end, final Array2DRowRealMatrix highOrder) { transformer.updateHighOrderDerivativesPhase2(start, end, highOrder); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy