All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.ode.nonstiff.ClassicalRungeKuttaStepInterpolator Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.ode.nonstiff;

import org.apache.commons.math.ode.DerivativeException;
import org.apache.commons.math.ode.sampling.StepInterpolator;

/**
 * This class implements a step interpolator for the classical fourth
 * order Runge-Kutta integrator.
 *
 * 

This interpolator allows to compute dense output inside the last * step computed. The interpolation equation is consistent with the * integration scheme : *

 *   y(t_n + theta h) = y (t_n + h)
 *                    + (1 - theta) (h/6) [ (-4 theta^2 + 5 theta - 1) y'_1
 *                                          +(4 theta^2 - 2 theta - 2) (y'_2 + y'_3)
 *                                          -(4 theta^2 +   theta + 1) y'_4
 *                                        ]
 * 
* * where theta belongs to [0 ; 1] and where y'_1 to y'_4 are the four * evaluations of the derivatives already computed during the * step.

* * @see ClassicalRungeKuttaIntegrator * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $ * @since 1.2 */ class ClassicalRungeKuttaStepInterpolator extends RungeKuttaStepInterpolator { /** Serializable version identifier */ private static final long serialVersionUID = -6576285612589783992L; /** Simple constructor. * This constructor builds an instance that is not usable yet, the * {@link RungeKuttaStepInterpolator#reinitialize} method should be * called before using the instance in order to initialize the * internal arrays. This constructor is used only in order to delay * the initialization in some cases. The {@link RungeKuttaIntegrator} * class uses the prototyping design pattern to create the step * interpolators by cloning an uninitialized model and latter initializing * the copy. */ public ClassicalRungeKuttaStepInterpolator() { } /** Copy constructor. * @param interpolator interpolator to copy from. The copy is a deep * copy: its arrays are separated from the original arrays of the * instance */ public ClassicalRungeKuttaStepInterpolator(final ClassicalRungeKuttaStepInterpolator interpolator) { super(interpolator); } /** {@inheritDoc} */ @Override protected StepInterpolator doCopy() { return new ClassicalRungeKuttaStepInterpolator(this); } /** {@inheritDoc} */ @Override protected void computeInterpolatedStateAndDerivatives(final double theta, final double oneMinusThetaH) throws DerivativeException { final double fourTheta = 4 * theta; final double oneMinusTheta = 1 - theta; final double oneMinus2Theta = 1 - 2 * theta; final double s = oneMinusThetaH / 6.0; final double coeff1 = s * ((-fourTheta + 5) * theta - 1); final double coeff23 = s * (( fourTheta - 2) * theta - 2); final double coeff4 = s * ((-fourTheta - 1) * theta - 1); final double coeffDot1 = oneMinusTheta * oneMinus2Theta; final double coeffDot23 = 2 * theta * oneMinusTheta; final double coeffDot4 = -theta * oneMinus2Theta; for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot23 = yDotK[1][i] + yDotK[2][i]; final double yDot4 = yDotK[3][i]; interpolatedState[i] = currentState[i] + coeff1 * yDot1 + coeff23 * yDot23 + coeff4 * yDot4; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot23 * yDot23 + coeffDot4 * yDot4; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy