All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.ode.nonstiff.EmbeddedRungeKuttaIntegrator Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.ode.nonstiff;

import org.apache.commons.math.ode.DerivativeException;
import org.apache.commons.math.ode.FirstOrderDifferentialEquations;
import org.apache.commons.math.ode.IntegratorException;
import org.apache.commons.math.ode.sampling.AbstractStepInterpolator;
import org.apache.commons.math.ode.sampling.DummyStepInterpolator;
import org.apache.commons.math.ode.sampling.StepHandler;
import org.apache.commons.math.util.FastMath;

/**
 * This class implements the common part of all embedded Runge-Kutta
 * integrators for Ordinary Differential Equations.
 *
 * 

These methods are embedded explicit Runge-Kutta methods with two * sets of coefficients allowing to estimate the error, their Butcher * arrays are as follows : *

 *    0  |
 *   c2  | a21
 *   c3  | a31  a32
 *   ... |        ...
 *   cs  | as1  as2  ...  ass-1
 *       |--------------------------
 *       |  b1   b2  ...   bs-1  bs
 *       |  b'1  b'2 ...   b's-1 b's
 * 
*

* *

In fact, we rather use the array defined by ej = bj - b'j to * compute directly the error rather than computing two estimates and * then comparing them.

* *

Some methods are qualified as fsal (first same as last) * methods. This means the last evaluation of the derivatives in one * step is the same as the first in the next step. Then, this * evaluation can be reused from one step to the next one and the cost * of such a method is really s-1 evaluations despite the method still * has s stages. This behaviour is true only for successful steps, if * the step is rejected after the error estimation phase, no * evaluation is saved. For an fsal method, we have cs = 1 and * asi = bi for all i.

* * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $ * @since 1.2 */ public abstract class EmbeddedRungeKuttaIntegrator extends AdaptiveStepsizeIntegrator { /** Indicator for fsal methods. */ private final boolean fsal; /** Time steps from Butcher array (without the first zero). */ private final double[] c; /** Internal weights from Butcher array (without the first empty row). */ private final double[][] a; /** External weights for the high order method from Butcher array. */ private final double[] b; /** Prototype of the step interpolator. */ private final RungeKuttaStepInterpolator prototype; /** Stepsize control exponent. */ private final double exp; /** Safety factor for stepsize control. */ private double safety; /** Minimal reduction factor for stepsize control. */ private double minReduction; /** Maximal growth factor for stepsize control. */ private double maxGrowth; /** Build a Runge-Kutta integrator with the given Butcher array. * @param name name of the method * @param fsal indicate that the method is an fsal * @param c time steps from Butcher array (without the first zero) * @param a internal weights from Butcher array (without the first empty row) * @param b propagation weights for the high order method from Butcher array * @param prototype prototype of the step interpolator to use * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error */ protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal, final double[] c, final double[][] a, final double[] b, final RungeKuttaStepInterpolator prototype, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) { super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); this.fsal = fsal; this.c = c; this.a = a; this.b = b; this.prototype = prototype; exp = -1.0 / getOrder(); // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); setMaxGrowth(10.0); } /** Build a Runge-Kutta integrator with the given Butcher array. * @param name name of the method * @param fsal indicate that the method is an fsal * @param c time steps from Butcher array (without the first zero) * @param a internal weights from Butcher array (without the first empty row) * @param b propagation weights for the high order method from Butcher array * @param prototype prototype of the step interpolator to use * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */ protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal, final double[] c, final double[][] a, final double[] b, final RungeKuttaStepInterpolator prototype, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) { super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); this.fsal = fsal; this.c = c; this.a = a; this.b = b; this.prototype = prototype; exp = -1.0 / getOrder(); // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); setMaxGrowth(10.0); } /** Get the order of the method. * @return order of the method */ public abstract int getOrder(); /** Get the safety factor for stepsize control. * @return safety factor */ public double getSafety() { return safety; } /** Set the safety factor for stepsize control. * @param safety safety factor */ public void setSafety(final double safety) { this.safety = safety; } /** {@inheritDoc} */ @Override public double integrate(final FirstOrderDifferentialEquations equations, final double t0, final double[] y0, final double t, final double[] y) throws DerivativeException, IntegratorException { sanityChecks(equations, t0, y0, t, y); setEquations(equations); resetEvaluations(); final boolean forward = t > t0; // create some internal working arrays final int stages = c.length + 1; if (y != y0) { System.arraycopy(y0, 0, y, 0, y0.length); } final double[][] yDotK = new double[stages][y0.length]; final double[] yTmp = new double[y0.length]; final double[] yDotTmp = new double[y0.length]; // set up an interpolator sharing the integrator arrays AbstractStepInterpolator interpolator; if (requiresDenseOutput()) { final RungeKuttaStepInterpolator rki = (RungeKuttaStepInterpolator) prototype.copy(); rki.reinitialize(this, yTmp, yDotK, forward); interpolator = rki; } else { interpolator = new DummyStepInterpolator(yTmp, yDotK[stages - 1], forward); } interpolator.storeTime(t0); // set up integration control objects stepStart = t0; double hNew = 0; boolean firstTime = true; for (StepHandler handler : stepHandlers) { handler.reset(); } setStateInitialized(false); // main integration loop isLastStep = false; do { interpolator.shift(); // iterate over step size, ensuring local normalized error is smaller than 1 double error = 10; while (error >= 1.0) { if (firstTime || !fsal) { // first stage computeDerivatives(stepStart, y, yDotK[0]); } if (firstTime) { final double[] scale = new double[mainSetDimension]; if (vecAbsoluteTolerance == null) { for (int i = 0; i < scale.length; ++i) { scale[i] = scalAbsoluteTolerance + scalRelativeTolerance * FastMath.abs(y[i]); } } else { for (int i = 0; i < scale.length; ++i) { scale[i] = vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * FastMath.abs(y[i]); } } hNew = initializeStep(equations, forward, getOrder(), scale, stepStart, y, yDotK[0], yTmp, yDotK[1]); firstTime = false; } stepSize = hNew; // next stages for (int k = 1; k < stages; ++k) { for (int j = 0; j < y0.length; ++j) { double sum = a[k-1][0] * yDotK[0][j]; for (int l = 1; l < k; ++l) { sum += a[k-1][l] * yDotK[l][j]; } yTmp[j] = y[j] + stepSize * sum; } computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]); } // estimate the state at the end of the step for (int j = 0; j < y0.length; ++j) { double sum = b[0] * yDotK[0][j]; for (int l = 1; l < stages; ++l) { sum += b[l] * yDotK[l][j]; } yTmp[j] = y[j] + stepSize * sum; } // estimate the error at the end of the step error = estimateError(yDotK, y, yTmp, stepSize); if (error >= 1.0) { // reject the step and attempt to reduce error by stepsize control final double factor = FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp))); hNew = filterStep(stepSize * factor, forward, false); } } // local error is small enough: accept the step, trigger events and step handlers interpolator.storeTime(stepStart + stepSize); System.arraycopy(yTmp, 0, y, 0, y0.length); System.arraycopy(yDotK[stages - 1], 0, yDotTmp, 0, y0.length); stepStart = acceptStep(interpolator, y, yDotTmp, t); if (!isLastStep) { // prepare next step interpolator.storeTime(stepStart); if (fsal) { // save the last evaluation for the next step System.arraycopy(yDotTmp, 0, yDotK[0], 0, y0.length); } // stepsize control for next step final double factor = FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp))); final double scaledH = stepSize * factor; final double nextT = stepStart + scaledH; final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t); hNew = filterStep(scaledH, forward, nextIsLast); final double filteredNextT = stepStart + hNew; final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t); if (filteredNextIsLast) { hNew = t - stepStart; } } } while (!isLastStep); final double stopTime = stepStart; resetInternalState(); return stopTime; } /** Get the minimal reduction factor for stepsize control. * @return minimal reduction factor */ public double getMinReduction() { return minReduction; } /** Set the minimal reduction factor for stepsize control. * @param minReduction minimal reduction factor */ public void setMinReduction(final double minReduction) { this.minReduction = minReduction; } /** Get the maximal growth factor for stepsize control. * @return maximal growth factor */ public double getMaxGrowth() { return maxGrowth; } /** Set the maximal growth factor for stepsize control. * @param maxGrowth maximal growth factor */ public void setMaxGrowth(final double maxGrowth) { this.maxGrowth = maxGrowth; } /** Compute the error ratio. * @param yDotK derivatives computed during the first stages * @param y0 estimate of the step at the start of the step * @param y1 estimate of the step at the end of the step * @param h current step * @return error ratio, greater than 1 if step should be rejected */ protected abstract double estimateError(double[][] yDotK, double[] y0, double[] y1, double h); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy