All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.ode.nonstiff.GillStepInterpolator Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.ode.nonstiff;

import org.apache.commons.math.ode.DerivativeException;
import org.apache.commons.math.ode.sampling.StepInterpolator;
import org.apache.commons.math.util.FastMath;

/**
 * This class implements a step interpolator for the Gill fourth
 * order Runge-Kutta integrator.
 *
 * 

This interpolator allows to compute dense output inside the last * step computed. The interpolation equation is consistent with the * integration scheme : * *

 *   y(t_n + theta h) = y (t_n + h)
 *                    - (1 - theta) (h/6) [ (1 - theta) (1 - 4 theta) y'_1
 *                                        + (1 - theta) (1 + 2 theta) ((2-q) y'_2 + (2+q) y'_3)
 *                                        + (1 + theta + 4 theta^2) y'_4
 *                                        ]
 * 
* where theta belongs to [0 ; 1], q = sqrt(2) and where y'_1 to y'_4 * are the four evaluations of the derivatives already computed during * the step.

* * @see GillIntegrator * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $ * @since 1.2 */ class GillStepInterpolator extends RungeKuttaStepInterpolator { /** First Gill coefficient. */ private static final double TWO_MINUS_SQRT_2 = 2 - FastMath.sqrt(2.0); /** Second Gill coefficient. */ private static final double TWO_PLUS_SQRT_2 = 2 + FastMath.sqrt(2.0); /** Serializable version identifier */ private static final long serialVersionUID = -107804074496313322L; /** Simple constructor. * This constructor builds an instance that is not usable yet, the * {@link * org.apache.commons.math.ode.sampling.AbstractStepInterpolator#reinitialize} * method should be called before using the instance in order to * initialize the internal arrays. This constructor is used only * in order to delay the initialization in some cases. The {@link * RungeKuttaIntegrator} class uses the prototyping design pattern * to create the step interpolators by cloning an uninitialized model * and later initializing the copy. */ public GillStepInterpolator() { } /** Copy constructor. * @param interpolator interpolator to copy from. The copy is a deep * copy: its arrays are separated from the original arrays of the * instance */ public GillStepInterpolator(final GillStepInterpolator interpolator) { super(interpolator); } /** {@inheritDoc} */ @Override protected StepInterpolator doCopy() { return new GillStepInterpolator(this); } /** {@inheritDoc} */ @Override protected void computeInterpolatedStateAndDerivatives(final double theta, final double oneMinusThetaH) throws DerivativeException { final double twoTheta = 2 * theta; final double fourTheta = 4 * theta; final double s = oneMinusThetaH / 6.0; final double oMt = 1 - theta; final double soMt = s * oMt; final double c23 = soMt * (1 + twoTheta); final double coeff1 = soMt * (1 - fourTheta); final double coeff2 = c23 * TWO_MINUS_SQRT_2; final double coeff3 = c23 * TWO_PLUS_SQRT_2; final double coeff4 = s * (1 + theta * (1 + fourTheta)); final double coeffDot1 = theta * (twoTheta - 3) + 1; final double cDot23 = theta * oMt; final double coeffDot2 = cDot23 * TWO_MINUS_SQRT_2; final double coeffDot3 = cDot23 * TWO_PLUS_SQRT_2; final double coeffDot4 = theta * (twoTheta - 1); for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot2 = yDotK[1][i]; final double yDot3 = yDotK[2][i]; final double yDot4 = yDotK[3][i]; interpolatedState[i] = currentState[i] - coeff1 * yDot1 - coeff2 * yDot2 - coeff3 * yDot3 - coeff4 * yDot4; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + coeffDot4 * yDot4; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy