All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.optimization.direct.DirectSearchOptimizer Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.direct;

import java.util.Arrays;
import java.util.Comparator;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.MaxEvaluationsExceededException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.analysis.MultivariateRealFunction;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.optimization.GoalType;
import org.apache.commons.math.optimization.MultivariateRealOptimizer;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealConvergenceChecker;
import org.apache.commons.math.optimization.RealPointValuePair;
import org.apache.commons.math.optimization.SimpleScalarValueChecker;

/**
 * This class implements simplex-based direct search optimization
 * algorithms.
 *
 * 

Direct search methods only use objective function values, they don't * need derivatives and don't either try to compute approximation of * the derivatives. According to a 1996 paper by Margaret H. Wright * (Direct * Search Methods: Once Scorned, Now Respectable), they are used * when either the computation of the derivative is impossible (noisy * functions, unpredictable discontinuities) or difficult (complexity, * computation cost). In the first cases, rather than an optimum, a * not too bad point is desired. In the latter cases, an * optimum is desired but cannot be reasonably found. In all cases * direct search methods can be useful.

* *

Simplex-based direct search methods are based on comparison of * the objective function values at the vertices of a simplex (which is a * set of n+1 points in dimension n) that is updated by the algorithms * steps.

* *

The initial configuration of the simplex can be set using either * {@link #setStartConfiguration(double[])} or {@link * #setStartConfiguration(double[][])}. If neither method has been called * before optimization is attempted, an explicit call to the first method * with all steps set to +1 is triggered, thus building a default * configuration from a unit hypercube. Each call to {@link * #optimize(MultivariateRealFunction, GoalType, double[]) optimize} will reuse * the current start configuration and move it such that its first vertex * is at the provided start point of the optimization. If the {@code optimize} * method is called to solve a different problem and the number of parameters * change, the start configuration will be reset to a default one with the * appropriate dimensions.

* *

If {@link #setConvergenceChecker(RealConvergenceChecker)} is not called, * a default {@link SimpleScalarValueChecker} is used.

* *

Convergence is checked by providing the worst points of * previous and current simplex to the convergence checker, not the best ones.

* *

This class is the base class performing the boilerplate simplex * initialization and handling. The simplex update by itself is * performed by the derived classes according to the implemented * algorithms.

* * implements MultivariateRealOptimizer since 2.0 * * @see MultivariateRealFunction * @see NelderMead * @see MultiDirectional * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $ * @since 1.2 */ public abstract class DirectSearchOptimizer implements MultivariateRealOptimizer { /** Simplex. */ protected RealPointValuePair[] simplex; /** Objective function. */ private MultivariateRealFunction f; /** Convergence checker. */ private RealConvergenceChecker checker; /** Maximal number of iterations allowed. */ private int maxIterations; /** Number of iterations already performed. */ private int iterations; /** Maximal number of evaluations allowed. */ private int maxEvaluations; /** Number of evaluations already performed. */ private int evaluations; /** Start simplex configuration. */ private double[][] startConfiguration; /** Simple constructor. */ protected DirectSearchOptimizer() { setConvergenceChecker(new SimpleScalarValueChecker()); setMaxIterations(Integer.MAX_VALUE); setMaxEvaluations(Integer.MAX_VALUE); } /** Set start configuration for simplex. *

The start configuration for simplex is built from a box parallel to * the canonical axes of the space. The simplex is the subset of vertices * of a box parallel to the canonical axes. It is built as the path followed * while traveling from one vertex of the box to the diagonally opposite * vertex moving only along the box edges. The first vertex of the box will * be located at the start point of the optimization.

*

As an example, in dimension 3 a simplex has 4 vertices. Setting the * steps to (1, 10, 2) and the start point to (1, 1, 1) would imply the * start simplex would be: { (1, 1, 1), (2, 1, 1), (2, 11, 1), (2, 11, 3) }. * The first vertex would be set to the start point at (1, 1, 1) and the * last vertex would be set to the diagonally opposite vertex at (2, 11, 3).

* @param steps steps along the canonical axes representing box edges, * they may be negative but not null * @exception IllegalArgumentException if one step is null */ public void setStartConfiguration(final double[] steps) throws IllegalArgumentException { // only the relative position of the n final vertices with respect // to the first one are stored final int n = steps.length; startConfiguration = new double[n][n]; for (int i = 0; i < n; ++i) { final double[] vertexI = startConfiguration[i]; for (int j = 0; j < i + 1; ++j) { if (steps[j] == 0.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX, j, j + 1); } System.arraycopy(steps, 0, vertexI, 0, j + 1); } } } /** Set start configuration for simplex. *

The real initial simplex will be set up by moving the reference * simplex such that its first point is located at the start point of the * optimization.

* @param referenceSimplex reference simplex * @exception IllegalArgumentException if the reference simplex does not * contain at least one point, or if there is a dimension mismatch * in the reference simplex or if one of its vertices is duplicated */ public void setStartConfiguration(final double[][] referenceSimplex) throws IllegalArgumentException { // only the relative position of the n final vertices with respect // to the first one are stored final int n = referenceSimplex.length - 1; if (n < 0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.SIMPLEX_NEED_ONE_POINT); } startConfiguration = new double[n][n]; final double[] ref0 = referenceSimplex[0]; // vertices loop for (int i = 0; i < n + 1; ++i) { final double[] refI = referenceSimplex[i]; // safety checks if (refI.length != n) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, refI.length, n); } for (int j = 0; j < i; ++j) { final double[] refJ = referenceSimplex[j]; boolean allEquals = true; for (int k = 0; k < n; ++k) { if (refI[k] != refJ[k]) { allEquals = false; break; } } if (allEquals) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX, i, j); } } // store vertex i position relative to vertex 0 position if (i > 0) { final double[] confI = startConfiguration[i - 1]; for (int k = 0; k < n; ++k) { confI[k] = refI[k] - ref0[k]; } } } } /** {@inheritDoc} */ public void setMaxIterations(int maxIterations) { this.maxIterations = maxIterations; } /** {@inheritDoc} */ public int getMaxIterations() { return maxIterations; } /** {@inheritDoc} */ public void setMaxEvaluations(int maxEvaluations) { this.maxEvaluations = maxEvaluations; } /** {@inheritDoc} */ public int getMaxEvaluations() { return maxEvaluations; } /** {@inheritDoc} */ public int getIterations() { return iterations; } /** {@inheritDoc} */ public int getEvaluations() { return evaluations; } /** {@inheritDoc} */ public void setConvergenceChecker(RealConvergenceChecker convergenceChecker) { this.checker = convergenceChecker; } /** {@inheritDoc} */ public RealConvergenceChecker getConvergenceChecker() { return checker; } /** {@inheritDoc} */ public RealPointValuePair optimize(final MultivariateRealFunction function, final GoalType goalType, final double[] startPoint) throws FunctionEvaluationException, OptimizationException, IllegalArgumentException { if ((startConfiguration == null) || (startConfiguration.length != startPoint.length)) { // no initial configuration has been set up for simplex // build a default one from a unit hypercube final double[] unit = new double[startPoint.length]; Arrays.fill(unit, 1.0); setStartConfiguration(unit); } this.f = function; final Comparator comparator = new Comparator() { public int compare(final RealPointValuePair o1, final RealPointValuePair o2) { final double v1 = o1.getValue(); final double v2 = o2.getValue(); return (goalType == GoalType.MINIMIZE) ? Double.compare(v1, v2) : Double.compare(v2, v1); } }; // initialize search iterations = 0; evaluations = 0; buildSimplex(startPoint); evaluateSimplex(comparator); RealPointValuePair[] previous = new RealPointValuePair[simplex.length]; while (true) { if (iterations > 0) { boolean converged = true; for (int i = 0; i < simplex.length; ++i) { converged &= checker.converged(iterations, previous[i], simplex[i]); } if (converged) { // we have found an optimum return simplex[0]; } } // we still need to search System.arraycopy(simplex, 0, previous, 0, simplex.length); iterateSimplex(comparator); } } /** Increment the iterations counter by 1. * @exception OptimizationException if the maximal number * of iterations is exceeded */ protected void incrementIterationsCounter() throws OptimizationException { if (++iterations > maxIterations) { throw new OptimizationException(new MaxIterationsExceededException(maxIterations)); } } /** Compute the next simplex of the algorithm. * @param comparator comparator to use to sort simplex vertices from best to worst * @exception FunctionEvaluationException if the function cannot be evaluated at * some point * @exception OptimizationException if the algorithm fails to converge * @exception IllegalArgumentException if the start point dimension is wrong */ protected abstract void iterateSimplex(final Comparator comparator) throws FunctionEvaluationException, OptimizationException, IllegalArgumentException; /** Evaluate the objective function on one point. *

A side effect of this method is to count the number of * function evaluations

* @param x point on which the objective function should be evaluated * @return objective function value at the given point * @exception FunctionEvaluationException if no value can be computed for the * parameters or if the maximal number of evaluations is exceeded * @exception IllegalArgumentException if the start point dimension is wrong */ protected double evaluate(final double[] x) throws FunctionEvaluationException, IllegalArgumentException { if (++evaluations > maxEvaluations) { throw new FunctionEvaluationException(new MaxEvaluationsExceededException(maxEvaluations), x); } return f.value(x); } /** Build an initial simplex. * @param startPoint the start point for optimization * @exception IllegalArgumentException if the start point does not match * simplex dimension */ private void buildSimplex(final double[] startPoint) throws IllegalArgumentException { final int n = startPoint.length; if (n != startConfiguration.length) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, n, startConfiguration.length); } // set first vertex simplex = new RealPointValuePair[n + 1]; simplex[0] = new RealPointValuePair(startPoint, Double.NaN); // set remaining vertices for (int i = 0; i < n; ++i) { final double[] confI = startConfiguration[i]; final double[] vertexI = new double[n]; for (int k = 0; k < n; ++k) { vertexI[k] = startPoint[k] + confI[k]; } simplex[i + 1] = new RealPointValuePair(vertexI, Double.NaN); } } /** Evaluate all the non-evaluated points of the simplex. * @param comparator comparator to use to sort simplex vertices from best to worst * @exception FunctionEvaluationException if no value can be computed for the parameters * @exception OptimizationException if the maximal number of evaluations is exceeded */ protected void evaluateSimplex(final Comparator comparator) throws FunctionEvaluationException, OptimizationException { // evaluate the objective function at all non-evaluated simplex points for (int i = 0; i < simplex.length; ++i) { final RealPointValuePair vertex = simplex[i]; final double[] point = vertex.getPointRef(); if (Double.isNaN(vertex.getValue())) { simplex[i] = new RealPointValuePair(point, evaluate(point), false); } } // sort the simplex from best to worst Arrays.sort(simplex, comparator); } /** Replace the worst point of the simplex by a new point. * @param pointValuePair point to insert * @param comparator comparator to use to sort simplex vertices from best to worst */ protected void replaceWorstPoint(RealPointValuePair pointValuePair, final Comparator comparator) { int n = simplex.length - 1; for (int i = 0; i < n; ++i) { if (comparator.compare(simplex[i], pointValuePair) > 0) { RealPointValuePair tmp = simplex[i]; simplex[i] = pointValuePair; pointValuePair = tmp; } } simplex[n] = pointValuePair; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy