All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.special.Erf Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.special;

import org.apache.commons.math.MathException;
import org.apache.commons.math.util.FastMath;

/**
 * This is a utility class that provides computation methods related to the
 * error functions.
 *
 * @version $Revision: 1054186 $ $Date: 2011-01-01 03:28:46 +0100 (sam. 01 janv. 2011) $
 */
public class Erf {

    /**
     * Default constructor.  Prohibit instantiation.
     */
    private Erf() {
        super();
    }

    /**
     * 

Returns the error function

*

erf(x) = 2/√π 0x e-t2dt

* *

This implementation computes erf(x) using the * {@link Gamma#regularizedGammaP(double, double, double, int) regularized gamma function}, * following Erf, equation (3)

* *

The value returned is always between -1 and 1 (inclusive). If {@code abs(x) > 40}, then * {@code erf(x)} is indistinguishable from either 1 or -1 as a double, so the appropriate extreme * value is returned.

* * @param x the value. * @return the error function erf(x) * @throws MathException if the algorithm fails to converge. * @see Gamma#regularizedGammaP(double, double, double, int) */ public static double erf(double x) throws MathException { if (FastMath.abs(x) > 40) { return x > 0 ? 1 : -1; } double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000); if (x < 0) { ret = -ret; } return ret; } /** *

Returns the complementary error function

*

erfc(x) = 2/√π x e-t2dt
* = 1 - {@link #erf(double) erf(x)}

* *

This implementation computes erfc(x) using the * {@link Gamma#regularizedGammaQ(double, double, double, int) regularized gamma function}, * following Erf, equation (3).

* *

The value returned is always between 0 and 2 (inclusive). If {@code abs(x) > 40}, then * {@code erf(x)} is indistinguishable from either 0 or 2 as a double, so the appropriate extreme * value is returned.

* * @param x the value * @return the complementary error function erfc(x) * @throws MathException if the algorithm fails to converge * @see Gamma#regularizedGammaQ(double, double, double, int) * @since 2.2 */ public static double erfc(double x) throws MathException { if (FastMath.abs(x) > 40) { return x > 0 ? 0 : 2; } final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000); return x < 0 ? 2 - ret : ret; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy