All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.transform.FastCosineTransformer Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.transform;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.complex.Complex;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * Implements the Fast Cosine Transform
 * for transformation of one-dimensional data sets. For reference, see
 * Fast Fourier Transforms, ISBN 0849371635, chapter 3.
 * 

* FCT is its own inverse, up to a multiplier depending on conventions. * The equations are listed in the comments of the corresponding methods.

*

* Different from FFT and FST, FCT requires the length of data set to be * power of 2 plus one. Users should especially pay attention to the * function transformation on how this affects the sampling.

*

As of version 2.0 this no longer implements Serializable

* * @version $Revision:670469 $ $Date:2008-06-23 10:01:38 +0200 (lun., 23 juin 2008) $ * @since 1.2 */ public class FastCosineTransformer implements RealTransformer { /** * Construct a default transformer. */ public FastCosineTransformer() { super(); } /** * Transform the given real data set. *

* The formula is Fn = (1/2) [f0 + (-1)n fN] + * ∑k=1N-1 fk cos(π nk/N) *

* * @param f the real data array to be transformed * @return the real transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform(double f[]) throws IllegalArgumentException { return fct(f); } /** * Transform the given real function, sampled on the given interval. *

* The formula is Fn = (1/2) [f0 + (-1)n fN] + * ∑k=1N-1 fk cos(π nk/N) *

* * @param f the function to be sampled and transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real transformed array * @throws FunctionEvaluationException if function cannot be evaluated * at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform(UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { double data[] = FastFourierTransformer.sample(f, min, max, n); return fct(data); } /** * Transform the given real data set. *

* The formula is Fn = √(1/2N) [f0 + (-1)n fN] + * √(2/N) ∑k=1N-1 fk cos(π nk/N) *

* * @param f the real data array to be transformed * @return the real transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform2(double f[]) throws IllegalArgumentException { double scaling_coefficient = FastMath.sqrt(2.0 / (f.length-1)); return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient); } /** * Transform the given real function, sampled on the given interval. *

* The formula is Fn = √(1/2N) [f0 + (-1)n fN] + * √(2/N) ∑k=1N-1 fk cos(π nk/N) * *

* * @param f the function to be sampled and transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real transformed array * @throws FunctionEvaluationException if function cannot be evaluated * at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform2(UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { double data[] = FastFourierTransformer.sample(f, min, max, n); double scaling_coefficient = FastMath.sqrt(2.0 / (n-1)); return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient); } /** * Inversely transform the given real data set. *

* The formula is fk = (1/N) [F0 + (-1)k FN] + * (2/N) ∑n=1N-1 Fn cos(π nk/N) *

* * @param f the real data array to be inversely transformed * @return the real inversely transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform(double f[]) throws IllegalArgumentException { double scaling_coefficient = 2.0 / (f.length - 1); return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient); } /** * Inversely transform the given real function, sampled on the given interval. *

* The formula is fk = (1/N) [F0 + (-1)k FN] + * (2/N) ∑n=1N-1 Fn cos(π nk/N) *

* * @param f the function to be sampled and inversely transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real inversely transformed array * @throws FunctionEvaluationException if function cannot be evaluated at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform(UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { double data[] = FastFourierTransformer.sample(f, min, max, n); double scaling_coefficient = 2.0 / (n - 1); return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient); } /** * Inversely transform the given real data set. *

* The formula is fk = √(1/2N) [F0 + (-1)k FN] + * √(2/N) ∑n=1N-1 Fn cos(π nk/N) *

* * @param f the real data array to be inversely transformed * @return the real inversely transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform2(double f[]) throws IllegalArgumentException { return transform2(f); } /** * Inversely transform the given real function, sampled on the given interval. *

* The formula is fk = √(1/2N) [F0 + (-1)k FN] + * √(2/N) ∑n=1N-1 Fn cos(π nk/N) *

* * @param f the function to be sampled and inversely transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real inversely transformed array * @throws FunctionEvaluationException if function cannot be evaluated at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform2(UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { return transform2(f, min, max, n); } /** * Perform the FCT algorithm (including inverse). * * @param f the real data array to be transformed * @return the real transformed array * @throws IllegalArgumentException if any parameters are invalid */ protected double[] fct(double f[]) throws IllegalArgumentException { final double transformed[] = new double[f.length]; final int n = f.length - 1; if (!FastFourierTransformer.isPowerOf2(n)) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.NOT_POWER_OF_TWO_PLUS_ONE, f.length); } if (n == 1) { // trivial case transformed[0] = 0.5 * (f[0] + f[1]); transformed[1] = 0.5 * (f[0] - f[1]); return transformed; } // construct a new array and perform FFT on it final double[] x = new double[n]; x[0] = 0.5 * (f[0] + f[n]); x[n >> 1] = f[n >> 1]; double t1 = 0.5 * (f[0] - f[n]); // temporary variable for transformed[1] for (int i = 1; i < (n >> 1); i++) { final double a = 0.5 * (f[i] + f[n-i]); final double b = FastMath.sin(i * FastMath.PI / n) * (f[i] - f[n-i]); final double c = FastMath.cos(i * FastMath.PI / n) * (f[i] - f[n-i]); x[i] = a - b; x[n-i] = a + b; t1 += c; } FastFourierTransformer transformer = new FastFourierTransformer(); Complex y[] = transformer.transform(x); // reconstruct the FCT result for the original array transformed[0] = y[0].getReal(); transformed[1] = t1; for (int i = 1; i < (n >> 1); i++) { transformed[2 * i] = y[i].getReal(); transformed[2 * i + 1] = transformed[2 * i - 1] - y[i].getImaginary(); } transformed[n] = y[n >> 1].getReal(); return transformed; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy