org.apache.commons.math.transform.FastCosineTransformer Maven / Gradle / Ivy
Show all versions of aem-sdk-api Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.transform;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.complex.Complex;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;
/**
* Implements the Fast Cosine Transform
* for transformation of one-dimensional data sets. For reference, see
* Fast Fourier Transforms, ISBN 0849371635, chapter 3.
*
* FCT is its own inverse, up to a multiplier depending on conventions.
* The equations are listed in the comments of the corresponding methods.
*
* Different from FFT and FST, FCT requires the length of data set to be
* power of 2 plus one. Users should especially pay attention to the
* function transformation on how this affects the sampling.
* As of version 2.0 this no longer implements Serializable
*
* @version $Revision:670469 $ $Date:2008-06-23 10:01:38 +0200 (lun., 23 juin 2008) $
* @since 1.2
*/
public class FastCosineTransformer implements RealTransformer {
/**
* Construct a default transformer.
*/
public FastCosineTransformer() {
super();
}
/**
* Transform the given real data set.
*
* The formula is Fn = (1/2) [f0 + (-1)n fN] +
* ∑k=1N-1 fk cos(π nk/N)
*
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(double f[]) throws IllegalArgumentException {
return fct(f);
}
/**
* Transform the given real function, sampled on the given interval.
*
* The formula is Fn = (1/2) [f0 + (-1)n fN] +
* ∑k=1N-1 fk cos(π nk/N)
*
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws FunctionEvaluationException if function cannot be evaluated
* at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(UnivariateRealFunction f,
double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
return fct(data);
}
/**
* Transform the given real data set.
*
* The formula is Fn = √(1/2N) [f0 + (-1)n fN] +
* √(2/N) ∑k=1N-1 fk cos(π nk/N)
*
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(double f[]) throws IllegalArgumentException {
double scaling_coefficient = FastMath.sqrt(2.0 / (f.length-1));
return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient);
}
/**
* Transform the given real function, sampled on the given interval.
*
* The formula is Fn = √(1/2N) [f0 + (-1)n fN] +
* √(2/N) ∑k=1N-1 fk cos(π nk/N)
*
*
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws FunctionEvaluationException if function cannot be evaluated
* at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(UnivariateRealFunction f,
double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
double scaling_coefficient = FastMath.sqrt(2.0 / (n-1));
return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient);
}
/**
* Inversely transform the given real data set.
*
* The formula is fk = (1/N) [F0 + (-1)k FN] +
* (2/N) ∑n=1N-1 Fn cos(π nk/N)
*
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform(double f[]) throws IllegalArgumentException {
double scaling_coefficient = 2.0 / (f.length - 1);
return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient);
}
/**
* Inversely transform the given real function, sampled on the given interval.
*
* The formula is fk = (1/N) [F0 + (-1)k FN] +
* (2/N) ∑n=1N-1 Fn cos(π nk/N)
*
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws FunctionEvaluationException if function cannot be evaluated at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform(UnivariateRealFunction f,
double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
double scaling_coefficient = 2.0 / (n - 1);
return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient);
}
/**
* Inversely transform the given real data set.
*
* The formula is fk = √(1/2N) [F0 + (-1)k FN] +
* √(2/N) ∑n=1N-1 Fn cos(π nk/N)
*
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform2(double f[]) throws IllegalArgumentException {
return transform2(f);
}
/**
* Inversely transform the given real function, sampled on the given interval.
*
* The formula is fk = √(1/2N) [F0 + (-1)k FN] +
* √(2/N) ∑n=1N-1 Fn cos(π nk/N)
*
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws FunctionEvaluationException if function cannot be evaluated at some point
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform2(UnivariateRealFunction f,
double min, double max, int n)
throws FunctionEvaluationException, IllegalArgumentException {
return transform2(f, min, max, n);
}
/**
* Perform the FCT algorithm (including inverse).
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws IllegalArgumentException if any parameters are invalid
*/
protected double[] fct(double f[])
throws IllegalArgumentException {
final double transformed[] = new double[f.length];
final int n = f.length - 1;
if (!FastFourierTransformer.isPowerOf2(n)) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.NOT_POWER_OF_TWO_PLUS_ONE,
f.length);
}
if (n == 1) { // trivial case
transformed[0] = 0.5 * (f[0] + f[1]);
transformed[1] = 0.5 * (f[0] - f[1]);
return transformed;
}
// construct a new array and perform FFT on it
final double[] x = new double[n];
x[0] = 0.5 * (f[0] + f[n]);
x[n >> 1] = f[n >> 1];
double t1 = 0.5 * (f[0] - f[n]); // temporary variable for transformed[1]
for (int i = 1; i < (n >> 1); i++) {
final double a = 0.5 * (f[i] + f[n-i]);
final double b = FastMath.sin(i * FastMath.PI / n) * (f[i] - f[n-i]);
final double c = FastMath.cos(i * FastMath.PI / n) * (f[i] - f[n-i]);
x[i] = a - b;
x[n-i] = a + b;
t1 += c;
}
FastFourierTransformer transformer = new FastFourierTransformer();
Complex y[] = transformer.transform(x);
// reconstruct the FCT result for the original array
transformed[0] = y[0].getReal();
transformed[1] = t1;
for (int i = 1; i < (n >> 1); i++) {
transformed[2 * i] = y[i].getReal();
transformed[2 * i + 1] = transformed[2 * i - 1] - y[i].getImaginary();
}
transformed[n] = y[n >> 1].getReal();
return transformed;
}
}