All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.search.SloppyPhraseScorer Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/*
 * COPIED FROM APACHE LUCENE 4.7.2
 *
 * Git URL: [email protected]:apache/lucene.git, tag: releases/lucene-solr/4.7.2, path: lucene/core/src/java
 *
 * (see https://issues.apache.org/jira/browse/OAK-10786 for details)
 */

package org.apache.lucene.search;

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedHashMap;

import org.apache.lucene.index.Term;
import org.apache.lucene.search.similarities.Similarity;
import org.apache.lucene.util.FixedBitSet;

final class SloppyPhraseScorer extends Scorer {
  private PhrasePositions min, max;

  private float sloppyFreq; //phrase frequency in current doc as computed by phraseFreq().

  private final Similarity.SimScorer docScorer;
  
  private final int slop;
  private final int numPostings;
  private final PhraseQueue pq; // for advancing min position
  
  private int end; // current largest phrase position  

  private boolean hasRpts; // flag indicating that there are repetitions (as checked in first candidate doc)
  private boolean checkedRpts; // flag to only check for repetitions in first candidate doc
  private boolean hasMultiTermRpts; //  
  private PhrasePositions[][] rptGroups; // in each group are PPs that repeats each other (i.e. same term), sorted by (query) offset 
  private PhrasePositions[] rptStack; // temporary stack for switching colliding repeating pps 
  
  private int numMatches;
  private final long cost;
  
  SloppyPhraseScorer(Weight weight, PhraseQuery.PostingsAndFreq[] postings,
      int slop, Similarity.SimScorer docScorer) {
    super(weight);
    this.docScorer = docScorer;
    this.slop = slop;
    this.numPostings = postings==null ? 0 : postings.length;
    pq = new PhraseQueue(postings.length);
    // min(cost)
    cost = postings[0].postings.cost();
    // convert tps to a list of phrase positions.
    // note: phrase-position differs from term-position in that its position
    // reflects the phrase offset: pp.pos = tp.pos - offset.
    // this allows to easily identify a matching (exact) phrase 
    // when all PhrasePositions have exactly the same position.
    if (postings.length > 0) {
      min = new PhrasePositions(postings[0].postings, postings[0].position, 0, postings[0].terms);
      max = min;
      max.doc = -1;
      for (int i = 1; i < postings.length; i++) {
        PhrasePositions pp = new PhrasePositions(postings[i].postings, postings[i].position, i, postings[i].terms);
        max.next = pp;
        max = pp;
        max.doc = -1;
      }
      max.next = min; // make it cyclic for easier manipulation
    }
  }

  /**
   * Score a candidate doc for all slop-valid position-combinations (matches) 
   * encountered while traversing/hopping the PhrasePositions.
   * 
The score contribution of a match depends on the distance: *
- highest score for distance=0 (exact match). *
- score gets lower as distance gets higher. *
Example: for query "a b"~2, a document "x a b a y" can be scored twice: * once for "a b" (distance=0), and once for "b a" (distance=2). *
Possibly not all valid combinations are encountered, because for efficiency * we always propagate the least PhrasePosition. This allows to base on * PriorityQueue and move forward faster. * As result, for example, document "a b c b a" * would score differently for queries "a b c"~4 and "c b a"~4, although * they really are equivalent. * Similarly, for doc "a b c b a f g", query "c b"~2 * would get same score as "g f"~2, although "c b"~2 could be matched twice. * We may want to fix this in the future (currently not, for performance reasons). */ private float phraseFreq() throws IOException { if (!initPhrasePositions()) { return 0.0f; } float freq = 0.0f; numMatches = 0; PhrasePositions pp = pq.pop(); int matchLength = end - pp.position; int next = pq.top().position; while (advancePP(pp)) { if (hasRpts && !advanceRpts(pp)) { break; // pps exhausted } if (pp.position > next) { // done minimizing current match-length if (matchLength <= slop) { freq += docScorer.computeSlopFactor(matchLength); // score match numMatches++; } pq.add(pp); pp = pq.pop(); next = pq.top().position; matchLength = end - pp.position; } else { int matchLength2 = end - pp.position; if (matchLength2 < matchLength) { matchLength = matchLength2; } } } if (matchLength <= slop) { freq += docScorer.computeSlopFactor(matchLength); // score match numMatches++; } return freq; } /** advance a PhrasePosition and update 'end', return false if exhausted */ private boolean advancePP(PhrasePositions pp) throws IOException { if (!pp.nextPosition()) { return false; } if (pp.position > end) { end = pp.position; } return true; } /** pp was just advanced. If that caused a repeater collision, resolve by advancing the lesser * of the two colliding pps. Note that there can only be one collision, as by the initialization * there were no collisions before pp was advanced. */ private boolean advanceRpts(PhrasePositions pp) throws IOException { if (pp.rptGroup < 0) { return true; // not a repeater } PhrasePositions[] rg = rptGroups[pp.rptGroup]; FixedBitSet bits = new FixedBitSet(rg.length); // for re-queuing after collisions are resolved int k0 = pp.rptInd; int k; while((k=collide(pp)) >= 0) { pp = lesser(pp, rg[k]); // always advance the lesser of the (only) two colliding pps if (!advancePP(pp)) { return false; // exhausted } if (k != k0) { // careful: mark only those currently in the queue bits = FixedBitSet.ensureCapacity(bits, k); bits.set(k); // mark that pp2 need to be re-queued } } // collisions resolved, now re-queue // empty (partially) the queue until seeing all pps advanced for resolving collisions int n = 0; // TODO would be good if we can avoid calling cardinality() in each iteration! int numBits = bits.length(); // larges bit we set while (bits.cardinality() > 0) { PhrasePositions pp2 = pq.pop(); rptStack[n++] = pp2; if (pp2.rptGroup >= 0 && pp2.rptInd < numBits // this bit may not have been set && bits.get(pp2.rptInd)) { bits.clear(pp2.rptInd); } } // add back to queue for (int i=n-1; i>=0; i--) { pq.add(rptStack[i]); } return true; } /** compare two pps, but only by position and offset */ private PhrasePositions lesser(PhrasePositions pp, PhrasePositions pp2) { if (pp.position < pp2.position || (pp.position == pp2.position && pp.offset < pp2.offset)) { return pp; } return pp2; } /** index of a pp2 colliding with pp, or -1 if none */ private int collide(PhrasePositions pp) { int tpPos = tpPos(pp); PhrasePositions[] rg = rptGroups[pp.rptGroup]; for (int i=0; i *
  • Check if there are repetitions *
  • If there are, find groups of repetitions. * * Examples: *
      *
    1. no repetitions: "ho my"~2 *
    2. repetitions: "ho my my"~2 *
    3. repetitions: "my ho my"~2 *
    * @return false if PPs are exhausted (and so current doc will not be a match) */ private boolean initPhrasePositions() throws IOException { end = Integer.MIN_VALUE; if (!checkedRpts) { return initFirstTime(); } if (!hasRpts) { initSimple(); return true; // PPs available } return initComplex(); } /** no repeats: simplest case, and most common. It is important to keep this piece of the code simple and efficient */ private void initSimple() throws IOException { //System.err.println("initSimple: doc: "+min.doc); pq.clear(); // position pps and build queue from list for (PhrasePositions pp=min,prev=null; prev!=max; pp=(prev=pp).next) { // iterate cyclic list: done once handled max pp.firstPosition(); if (pp.position > end) { end = pp.position; } pq.add(pp); } } /** with repeats: not so simple. */ private boolean initComplex() throws IOException { //System.err.println("initComplex: doc: "+min.doc); placeFirstPositions(); if (!advanceRepeatGroups()) { return false; // PPs exhausted } fillQueue(); return true; // PPs available } /** move all PPs to their first position */ private void placeFirstPositions() throws IOException { for (PhrasePositions pp=min,prev=null; prev!=max; pp=(prev=pp).next) { // iterate cyclic list: done once handled max pp.firstPosition(); } } /** Fill the queue (all pps are already placed */ private void fillQueue() { pq.clear(); for (PhrasePositions pp=min,prev=null; prev!=max; pp=(prev=pp).next) { // iterate cyclic list: done once handled max if (pp.position > end) { end = pp.position; } pq.add(pp); } } /** At initialization (each doc), each repetition group is sorted by (query) offset. * This provides the start condition: no collisions. *

    Case 1: no multi-term repeats
    * It is sufficient to advance each pp in the group by one less than its group index. * So lesser pp is not advanced, 2nd one advance once, 3rd one advanced twice, etc. *

    Case 2: multi-term repeats
    * * @return false if PPs are exhausted. */ private boolean advanceRepeatGroups() throws IOException { for (PhrasePositions[] rg: rptGroups) { if (hasMultiTermRpts) { // more involved, some may not collide int incr; for (int i=0; i= 0) { PhrasePositions pp2 = lesser(pp, rg[k]); if (!advancePP(pp2)) { // at initialization always advance pp with higher offset return false; // exhausted } if (pp2.rptInd < i) { // should not happen? incr = 0; break; } } } } else { // simpler, we know exactly how much to advance for (int j=1; j * If there are repetitions, check if multi-term postings (MTP) are involved.

    * Without MTP, once PPs are placed in the first candidate doc, repeats (and groups) are visible.
    * With MTP, a more complex check is needed, up-front, as there may be "hidden collisions".
    * For example P1 has {A,B}, P1 has {B,C}, and the first doc is: "A C B". At start, P1 would point * to "A", p2 to "C", and it will not be identified that P1 and P2 are repetitions of each other.

    * The more complex initialization has two parts:
    * (1) identification of repetition groups.
    * (2) advancing repeat groups at the start of the doc.
    * For (1), a possible solution is to just create a single repetition group, * made of all repeating pps. But this would slow down the check for collisions, * as all pps would need to be checked. Instead, we compute "connected regions" * on the bipartite graph of postings and terms. */ private boolean initFirstTime() throws IOException { //System.err.println("initFirstTime: doc: "+min.doc); checkedRpts = true; placeFirstPositions(); LinkedHashMap rptTerms = repeatingTerms(); hasRpts = !rptTerms.isEmpty(); if (hasRpts) { rptStack = new PhrasePositions[numPostings]; // needed with repetitions ArrayList> rgs = gatherRptGroups(rptTerms); sortRptGroups(rgs); if (!advanceRepeatGroups()) { return false; // PPs exhausted } } fillQueue(); return true; // PPs available } /** sort each repetition group by (query) offset. * Done only once (at first doc) and allows to initialize faster for each doc. */ private void sortRptGroups(ArrayList> rgs) { rptGroups = new PhrasePositions[rgs.size()][]; Comparator cmprtr = new Comparator() { @Override public int compare(PhrasePositions pp1, PhrasePositions pp2) { return pp1.offset - pp2.offset; } }; for (int i=0; i> gatherRptGroups(LinkedHashMap rptTerms) throws IOException { PhrasePositions[] rpp = repeatingPPs(rptTerms); ArrayList> res = new ArrayList>(); if (!hasMultiTermRpts) { // simpler - no multi-terms - can base on positions in first doc for (int i=0; i=0) continue; // already marked as a repetition int tpPos = tpPos(pp); for (int j=i+1; j=0 // already marked as a repetition || pp2.offset == pp.offset // not a repetition: two PPs are originally in same offset in the query! || tpPos(pp2) != tpPos) { // not a repetition continue; } // a repetition int g = pp.rptGroup; if (g < 0) { g = res.size(); pp.rptGroup = g; ArrayList rl = new ArrayList(2); rl.add(pp); res.add(rl); } pp2.rptGroup = g; res.get(g).add(pp2); } } } else { // more involved - has multi-terms ArrayList> tmp = new ArrayList>(); ArrayList bb = ppTermsBitSets(rpp, rptTerms); unionTermGroups(bb); HashMap tg = termGroups(rptTerms, bb); HashSet distinctGroupIDs = new HashSet(tg.values()); for (int i=0; i()); } for (PhrasePositions pp : rpp) { for (Term t: pp.terms) { if (rptTerms.containsKey(t)) { int g = tg.get(t); tmp.get(g).add(pp); assert pp.rptGroup==-1 || pp.rptGroup==g; pp.rptGroup = g; } } } for (HashSet hs : tmp) { res.add(new ArrayList(hs)); } } return res; } /** Actual position in doc of a PhrasePosition, relies on that position = tpPos - offset) */ private final int tpPos(PhrasePositions pp) { return pp.position + pp.offset; } /** find repeating terms and assign them ordinal values */ private LinkedHashMap repeatingTerms() { LinkedHashMap tord = new LinkedHashMap(); HashMap tcnt = new HashMap(); for (PhrasePositions pp=min,prev=null; prev!=max; pp=(prev=pp).next) { // iterate cyclic list: done once handled max for (Term t : pp.terms) { Integer cnt0 = tcnt.get(t); Integer cnt = cnt0==null ? new Integer(1) : new Integer(1+cnt0.intValue()); tcnt.put(t, cnt); if (cnt==2) { tord.put(t,tord.size()); } } } return tord; } /** find repeating pps, and for each, if has multi-terms, update this.hasMultiTermRpts */ private PhrasePositions[] repeatingPPs(HashMap rptTerms) { ArrayList rp = new ArrayList(); for (PhrasePositions pp=min,prev=null; prev!=max; pp=(prev=pp).next) { // iterate cyclic list: done once handled max for (Term t : pp.terms) { if (rptTerms.containsKey(t)) { rp.add(pp); hasMultiTermRpts |= (pp.terms.length > 1); break; } } } return rp.toArray(new PhrasePositions[0]); } /** bit-sets - for each repeating pp, for each of its repeating terms, the term ordinal values is set */ private ArrayList ppTermsBitSets(PhrasePositions[] rpp, HashMap tord) { ArrayList bb = new ArrayList(rpp.length); for (PhrasePositions pp : rpp) { FixedBitSet b = new FixedBitSet(tord.size()); Integer ord; for (Term t: pp.terms) { if ((ord=tord.get(t))!=null) { b.set(ord); } } bb.add(b); } return bb; } /** union (term group) bit-sets until they are disjoint (O(n^^2)), and each group have different terms */ private void unionTermGroups(ArrayList bb) { int incr; for (int i=0; i termGroups(LinkedHashMap tord, ArrayList bb) throws IOException { HashMap tg = new HashMap(); Term[] t = tord.keySet().toArray(new Term[0]); for (int i=0; i0) { // t[0] = pq.pop(); // ps.println(" " + 0 + " " + t[0]); // for (int i=1; i=0; i--) { // pq.add(t[i]); // } // } // } private boolean advanceMin(int target) throws IOException { if (!min.skipTo(target)) { max.doc = NO_MORE_DOCS; // for further calls to docID() return false; } min = min.next; // cyclic max = max.next; // cyclic return true; } @Override public int docID() { return max.doc; } @Override public int nextDoc() throws IOException { return advance(max.doc + 1); // advance to the next doc after #docID() } @Override public float score() { return docScorer.score(max.doc, sloppyFreq); } @Override public int advance(int target) throws IOException { assert target > docID(); do { if (!advanceMin(target)) { return NO_MORE_DOCS; } while (min.doc < max.doc) { if (!advanceMin(max.doc)) { return NO_MORE_DOCS; } } // found a doc with all of the terms sloppyFreq = phraseFreq(); // check for phrase target = min.doc + 1; // next target in case sloppyFreq is still 0 } while (sloppyFreq == 0f); // found a match return max.doc; } @Override public long cost() { return cost; } @Override public String toString() { return "scorer(" + weight + ")"; } }





  • © 2015 - 2024 Weber Informatics LLC | Privacy Policy