All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.poi.ss.formula.functions.Gcd Maven / Gradle / Ivy

There is a newer version: 2024.11.18751.20241128T090041Z-241100
Show newest version
/* ====================================================================
   Licensed to the Apache Software Foundation (ASF) under one or more
   contributor license agreements.  See the NOTICE file distributed with
   this work for additional information regarding copyright ownership.
   The ASF licenses this file to You under the Apache License, Version 2.0
   (the "License"); you may not use this file except in compliance with
   the License.  You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
==================================================================== */
package org.apache.poi.ss.formula.functions;

import org.apache.commons.math3.util.ArithmeticUtils;
import org.apache.poi.ss.formula.OperationEvaluationContext;
import org.apache.poi.ss.formula.eval.ErrorEval;
import org.apache.poi.ss.formula.eval.EvaluationException;
import org.apache.poi.ss.formula.eval.NumberEval;
import org.apache.poi.ss.formula.eval.OperandResolver;
import org.apache.poi.ss.formula.eval.ValueEval;

import java.util.ArrayList;


/**
 * Implementation for Excel GCD() function.
 * 

* Syntax:
GCD (number, ...)
*

*

* Returns the greatest common divisor of two or more integers. The greatest common divisor is the largest integer that divides both number1 and number2 without a remainder. *

*

* See https://support.microsoft.com/en-us/office/gcd-function-d5107a51-69e3-461f-8e4c-ddfc21b5073a *

*/ public class Gcd implements FreeRefFunction { public static final Gcd instance = new Gcd(); private static final long MAX_INPUT = (long)Math.pow(2, 53); @Override public ValueEval evaluate(ValueEval[] args, OperationEvaluationContext ec) { if (args.length < 1) { return ErrorEval.VALUE_INVALID; } else if (args.length == 1) { try { ValueEval v1 = OperandResolver.getSingleValue(args[0], ec.getRowIndex(), ec.getColumnIndex()); double d = OperandResolver.coerceValueToDouble(v1); if (isInvalidInput(d)) { return ErrorEval.NUM_ERROR; } return new NumberEval((long)d); } catch (EvaluationException ee) { return ErrorEval.VALUE_INVALID; } } else { try { ArrayList evals = new ArrayList<>(); for (ValueEval arg : args) { ValueEval ve = OperandResolver.getSingleValue(arg, ec.getRowIndex(), ec.getColumnIndex()); double d = OperandResolver.coerceValueToDouble(ve); if (isInvalidInput(d)) { return ErrorEval.NUM_ERROR; } evals.add((long) d); } long result = evals.get(0); for (int i = 1; i < evals.size(); i++) { result = ArithmeticUtils.gcd(result, evals.get(i)); } return new NumberEval(result); } catch (EvaluationException ee) { return ErrorEval.VALUE_INVALID; } } } private boolean isInvalidInput(double d) { return (d < 0 || d > MAX_INPUT); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy