org.apache.tika.parser.captioning.tf.model_wrapper.py Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of aem-sdk-api Show documentation
Show all versions of aem-sdk-api Show documentation
The Adobe Experience Manager SDK
#!/usr/bin/env python
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import tensorflow as tf
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_base
slim = tf.contrib.slim
class ModelWrapper(object):
"""
Model wrapper class to perform image captioning with a ShowAndTellModel
"""
def __init__(self):
super(ModelWrapper, self).__init__()
def build_graph(self, checkpoint_path):
"""Builds the inference graph"""
tf.logging.info("Building model.")
ShowAndTellModel().build()
saver = tf.train.Saver()
return self._create_restore_fn(checkpoint_path, saver)
def _create_restore_fn(self, checkpoint_path, saver):
"""Creates a function that restores a model from checkpoint file"""
if tf.gfile.IsDirectory(checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
if not checkpoint_path:
raise ValueError("No checkpoint file found in: %s" % checkpoint_path)
def _restore_fn(sess):
tf.logging.info("Loading model from checkpoint: %s", checkpoint_path)
saver.restore(sess, checkpoint_path)
tf.logging.info("Successfully loaded checkpoint: %s",
os.path.basename(checkpoint_path))
return _restore_fn
def feed_image(self, sess, encoded_image):
initial_state = sess.run(fetches="lstm/initial_state:0",
feed_dict={"image_feed:0": encoded_image})
return initial_state
def inference_step(self, sess, input_feed, state_feed):
softmax_output, state_output = sess.run(
fetches=["softmax:0", "lstm/state:0"],
feed_dict={
"input_feed:0": input_feed,
"lstm/state_feed:0": state_feed,
})
return softmax_output, state_output
class ShowAndTellModel(object):
"""
Image captioning implementation based on the paper,
"Show and Tell: A Neural Image Caption Generator"
Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan
For more details, please visit : http://arxiv.org/abs/1411.4555
"""
def __init__(self):
# scale used to initialize model variables
self.initializer_scale = 0.08
# dimensions of Inception v3 input images
self.image_height = 299
self.image_width = 299
# LSTM input and output dimensionality, respectively
self.embedding_size = 512
self.num_lstm_units = 512
# number of unique words in the vocab (plus 1, for )
# the default value is larger than the expected actual vocab size to allow
# for differences between tokenizer versions used in preprocessing, there is
# no harm in using a value greater than the actual vocab size, but using a
# value less than the actual vocab size will result in an error
self.vocab_size = 12000
# reader for the input data
self.reader = tf.TFRecordReader()
# to match the "Show and Tell" paper we initialize all variables with a
# random uniform initializer
self.initializer = tf.random_uniform_initializer(
minval=-self.initializer_scale,
maxval=self.initializer_scale)
# a float32 Tensor with shape [batch_size, height, width, channels]
self.images = None
# an int32 Tensor with shape [batch_size, padded_length]
self.input_seqs = None
# an int32 Tensor with shape [batch_size, padded_length]
self.target_seqs = None
# an int32 0/1 Tensor with shape [batch_size, padded_length]
self.input_mask = None
# a float32 Tensor with shape [batch_size, embedding_size]
self.image_embeddings = None
# a float32 Tensor with shape [batch_size, padded_length, embedding_size]
self.seq_embeddings = None
# collection of variables from the inception submodel
self.inception_variables = []
# global step Tensor
self.global_step = None
def process_image(self, encoded_image, resize_height=346, resize_width=346, thread_id=0):
"""Decodes and processes an image string"""
# helper function to log an image summary to the visualizer. Summaries are
# only logged in thread 0
def image_summary(name, img):
if not thread_id:
tf.summary.image(name, tf.expand_dims(img, 0))
# decode image into a float32 Tensor of shape [?, ?, 3] with values in [0, 1)
with tf.name_scope("decode", values=[encoded_image]):
image = tf.image.decode_jpeg(encoded_image, channels=3)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image_summary("original_image", image)
# resize image
assert (resize_height > 0) == (resize_width > 0)
if resize_height:
image = tf.image.resize_images(image,
size=[resize_height, resize_width],
method=tf.image.ResizeMethod.BILINEAR)
# central crop, assuming resize_height > height, resize_width > width
image = tf.image.resize_image_with_crop_or_pad(image, self.image_height, self.image_width)
image_summary("resized_image", image)
image_summary("final_image", image)
# rescale to [-1,1] instead of [0, 1]
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
def build_inputs(self):
"""Input prefetching, preprocessing and batching"""
image_feed = tf.placeholder(dtype=tf.string, shape=[], name="image_feed")
input_feed = tf.placeholder(dtype=tf.int64,
shape=[None], # batch_size
name="input_feed")
# process image and insert batch dimensions
images = tf.expand_dims(self.process_image(image_feed), 0)
input_seqs = tf.expand_dims(input_feed, 1)
# no target sequences or input mask in inference mode
target_seqs = None
input_mask = None
self.images = images
self.input_seqs = input_seqs
self.target_seqs = target_seqs
self.input_mask = input_mask
def build_image_embeddings(self):
"""Builds the image model(Inception V3) subgraph and generates image embeddings"""
# parameter initialization
batch_norm_params = {
"is_training": False,
"trainable": False,
# decay for the moving averages
"decay": 0.9997,
# epsilon to prevent 0s in variance
"epsilon": 0.001,
# collection containing the moving mean and moving variance
"variables_collections": {
"beta": None,
"gamma": None,
"moving_mean": ["moving_vars"],
"moving_variance": ["moving_vars"],
}
}
stddev = 0.1,
dropout_keep_prob = 0.8
with tf.variable_scope("InceptionV3", "InceptionV3", [self.images]) as scope:
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=None,
trainable=False):
with slim.arg_scope(
[slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
net, end_points = inception_v3_base(self.images, scope=scope)
with tf.variable_scope("logits"):
shape = net.get_shape()
net = slim.avg_pool2d(net, shape[1:3], padding="VALID", scope="pool")
net = slim.dropout(
net,
keep_prob=dropout_keep_prob,
is_training=False,
scope="dropout")
net = slim.flatten(net, scope="flatten")
# add summaries
for v in end_points.values():
tf.contrib.layers.summaries.summarize_activation(v)
self.inception_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="InceptionV3")
# map inception output(net) into embedding space
with tf.variable_scope("image_embedding") as scope:
image_embeddings = tf.contrib.layers.fully_connected(
inputs=net,
num_outputs=self.embedding_size,
activation_fn=None,
weights_initializer=self.initializer,
biases_initializer=None,
scope=scope)
# save the embedding size in the graph
tf.constant(self.embedding_size, name="embedding_size")
self.image_embeddings = image_embeddings
def build_seq_embeddings(self):
"""Builds the input sequence embeddings"""
with tf.variable_scope("seq_embedding"), tf.device("/cpu:0"):
embedding_map = tf.get_variable(
name="map",
shape=[self.vocab_size, self.embedding_size],
initializer=self.initializer)
seq_embeddings = tf.nn.embedding_lookup(embedding_map, self.input_seqs)
self.seq_embeddings = seq_embeddings
def build_model(self):
# this LSTM cell has biases and outputs tanh(new_c) * sigmoid(o), but the
# modified LSTM in the "Show and Tell" paper has no biases and outputs
# new_c * sigmoid(o).
lstm_cell = tf.contrib.rnn.BasicLSTMCell(
num_units=self.num_lstm_units, state_is_tuple=True)
with tf.variable_scope("lstm", initializer=self.initializer) as lstm_scope:
# feed the image embeddings to set the initial LSTM state
zero_state = lstm_cell.zero_state(
batch_size=self.image_embeddings.get_shape()[0], dtype=tf.float32)
_, initial_state = lstm_cell(self.image_embeddings, zero_state)
# allow the LSTM variables to be reused
lstm_scope.reuse_variables()
# because this is inference mode,
# use concatenated states for convenient feeding and fetching
tf.concat(axis=1, values=initial_state, name="initial_state")
# placeholder for feeding a batch of concatenated states
state_feed = tf.placeholder(dtype=tf.float32,
shape=[None, sum(lstm_cell.state_size)],
name="state_feed")
state_tuple = tf.split(value=state_feed, num_or_size_splits=2, axis=1)
# run a single LSTM step
lstm_outputs, state_tuple = lstm_cell(
inputs=tf.squeeze(self.seq_embeddings, axis=[1]),
state=state_tuple)
# concatentate the resulting state
tf.concat(axis=1, values=state_tuple, name="state")
# stack batches vertically
lstm_outputs = tf.reshape(lstm_outputs, [-1, lstm_cell.output_size])
with tf.variable_scope("logits") as logits_scope:
logits = tf.contrib.layers.fully_connected(
inputs=lstm_outputs,
num_outputs=self.vocab_size,
activation_fn=None,
weights_initializer=self.initializer,
scope=logits_scope)
tf.nn.softmax(logits, name="softmax")
def setup_global_step(self):
"""Sets up the global step Tensor"""
global_step = tf.Variable(
initial_value=0,
name="global_step",
trainable=False,
collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES])
self.global_step = global_step
def build(self):
self.build_inputs()
self.build_image_embeddings()
self.build_seq_embeddings()
self.build_model()
self.setup_global_step()
© 2015 - 2024 Weber Informatics LLC | Privacy Policy