All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.distribution.WeibullDistributionImpl Maven / Gradle / Ivy

There is a newer version: 6.5.21
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.distribution;

import java.io.Serializable;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.special.Gamma;
import org.apache.commons.math.util.FastMath;

/**
 * Default implementation of
 * {@link org.apache.commons.math.distribution.WeibullDistribution}.
 *
 * @since 1.1
 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
 */
public class WeibullDistributionImpl extends AbstractContinuousDistribution
        implements WeibullDistribution, Serializable {

    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier */
    private static final long serialVersionUID = 8589540077390120676L;

    /** The shape parameter. */
    private double shape;

    /** The scale parameter. */
    private double scale;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /** Cached numerical mean */
    private double numericalMean = Double.NaN;

    /** Whether or not the numerical mean has been calculated */
    private boolean numericalMeanIsCalculated = false;

    /** Cached numerical variance */
    private double numericalVariance = Double.NaN;

    /** Whether or not the numerical variance has been calculated */
    private boolean numericalVarianceIsCalculated = false;

    /**
     * Creates weibull distribution with the given shape and scale and a
     * location equal to zero.
     * @param alpha the shape parameter.
     * @param beta the scale parameter.
     */
    public WeibullDistributionImpl(double alpha, double beta){
        this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Creates weibull distribution with the given shape, scale and inverse
     * cumulative probability accuracy and a location equal to zero.
     * @param alpha the shape parameter.
     * @param beta the scale parameter.
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public WeibullDistributionImpl(double alpha, double beta, double inverseCumAccuracy){
        super();
        setShapeInternal(alpha);
        setScaleInternal(beta);
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * For this distribution, X, this method returns P(X < x).
     * @param x the value at which the CDF is evaluated.
     * @return CDF evaluated at x.
     */
    public double cumulativeProbability(double x) {
        double ret;
        if (x <= 0.0) {
            ret = 0.0;
        } else {
            ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape));
        }
        return ret;
    }

    /**
     * Access the shape parameter.
     * @return the shape parameter.
     */
    public double getShape() {
        return shape;
    }

    /**
     * Access the scale parameter.
     * @return the scale parameter.
     */
    public double getScale() {
        return scale;
    }

    /**
     * Returns the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @since 2.1
     */
    @Override
    public double density(double x) {
        if (x < 0) {
            return 0;
        }

        final double xscale = x / scale;
        final double xscalepow = FastMath.pow(xscale, shape - 1);

        /*
         * FastMath.pow(x / scale, shape) =
         * FastMath.pow(xscale, shape) =
         * FastMath.pow(xscale, shape - 1) * xscale
         */
        final double xscalepowshape = xscalepow * xscale;

        return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape);
    }

    /**
     * For this distribution, X, this method returns the critical point x, such
     * that P(X < x) = p.
     * 

* Returns Double.NEGATIVE_INFINITY for p=0 and * Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws IllegalArgumentException if p is not a valid * probability. */ @Override public double inverseCumulativeProbability(double p) { double ret; if (p < 0.0 || p > 1.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0); } else if (p == 0) { ret = 0.0; } else if (p == 1) { ret = Double.POSITIVE_INFINITY; } else { ret = scale * FastMath.pow(-FastMath.log(1.0 - p), 1.0 / shape); } return ret; } /** * Modify the shape parameter. * @param alpha the new shape parameter value. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setShape(double alpha) { setShapeInternal(alpha); invalidateParameterDependentMoments(); } /** * Modify the shape parameter. * @param alpha the new shape parameter value. */ private void setShapeInternal(double alpha) { if (alpha <= 0.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.NOT_POSITIVE_SHAPE, alpha); } this.shape = alpha; } /** * Modify the scale parameter. * @param beta the new scale parameter value. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setScale(double beta) { setScaleInternal(beta); invalidateParameterDependentMoments(); } /** * Modify the scale parameter. * @param beta the new scale parameter value. */ private void setScaleInternal(double beta) { if (beta <= 0.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.NOT_POSITIVE_SCALE, beta); } this.scale = beta; } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ @Override protected double getDomainLowerBound(double p) { return 0.0; } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ @Override protected double getDomainUpperBound(double p) { return Double.MAX_VALUE; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ @Override protected double getInitialDomain(double p) { // use median return FastMath.pow(scale * FastMath.log(2.0), 1.0 / shape); } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * Returns the lower bound of the support for the distribution. * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) * @since 2.2 */ public double getSupportLowerBound() { return 0; } /** * Returns the upper bound of the support for the distribution. * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) * @since 2.2 */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * Calculates the mean. * * The mean is scale * Gamma(1 + (1 / shape)) * where Gamma(...) is the Gamma-function * * @return the mean * @since 2.2 */ protected double calculateNumericalMean() { final double sh = getShape(); final double sc = getScale(); return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh))); } /** * Calculates the variance. * * The variance is * scale^2 * Gamma(1 + (2 / shape)) - mean^2 * where Gamma(...) is the Gamma-function * * @return the variance * @since 2.2 */ private double calculateNumericalVariance() { final double sh = getShape(); final double sc = getScale(); final double mn = getNumericalMean(); return (sc * sc) * FastMath.exp(Gamma.logGamma(1 + (2 / sh))) - (mn * mn); } /** * Returns the mean of the distribution. * * @return the mean or Double.NaN if it's not defined * @since 2.2 */ public double getNumericalMean() { if (!numericalMeanIsCalculated) { numericalMean = calculateNumericalMean(); numericalMeanIsCalculated = true; } return numericalMean; } /** * Returns the variance of the distribution. * * @return the variance (possibly Double.POSITIVE_INFINITY as * for certain cases in {@link TDistributionImpl}) or * Double.NaN if it's not defined * @since 2.2 */ public double getNumericalVariance() { if (!numericalVarianceIsCalculated) { numericalVariance = calculateNumericalVariance(); numericalVarianceIsCalculated = true; } return numericalVariance; } /** * Invalidates the cached mean and variance. */ private void invalidateParameterDependentMoments() { numericalMeanIsCalculated = false; numericalVarianceIsCalculated = false; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy