All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.transform.FastSineTransformer Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.transform;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.complex.Complex;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;

/**
 * Implements the Fast Sine Transform
 * for transformation of one-dimensional data sets. For reference, see
 * Fast Fourier Transforms, ISBN 0849371635, chapter 3.
 * 

* FST is its own inverse, up to a multiplier depending on conventions. * The equations are listed in the comments of the corresponding methods.

*

* Similar to FFT, we also require the length of data set to be power of 2. * In addition, the first element must be 0 and it's enforced in function * transformation after sampling.

*

As of version 2.0 this no longer implements Serializable

* * @version $Revision: 1070725 $ $Date: 2011-02-15 02:31:12 +0100 (mar. 15 févr. 2011) $ * @since 1.2 */ public class FastSineTransformer implements RealTransformer { /** * Construct a default transformer. */ public FastSineTransformer() { super(); } /** * Transform the given real data set. *

* The formula is Fn = ∑k=0N-1 fk sin(π nk/N) *

* * @param f the real data array to be transformed * @return the real transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform(double f[]) throws IllegalArgumentException { return fst(f); } /** * Transform the given real function, sampled on the given interval. *

* The formula is Fn = ∑k=0N-1 fk sin(π nk/N) *

* * @param f the function to be sampled and transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real transformed array * @throws FunctionEvaluationException if function cannot be evaluated * at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform(UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { double data[] = FastFourierTransformer.sample(f, min, max, n); data[0] = 0.0; return fst(data); } /** * Transform the given real data set. *

* The formula is Fn = √(2/N) ∑k=0N-1 fk sin(π nk/N) *

* * @param f the real data array to be transformed * @return the real transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform2(double f[]) throws IllegalArgumentException { double scaling_coefficient = FastMath.sqrt(2.0 / f.length); return FastFourierTransformer.scaleArray(fst(f), scaling_coefficient); } /** * Transform the given real function, sampled on the given interval. *

* The formula is Fn = √(2/N) ∑k=0N-1 fk sin(π nk/N) *

* * @param f the function to be sampled and transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real transformed array * @throws FunctionEvaluationException if function cannot be evaluated * at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] transform2( UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { double data[] = FastFourierTransformer.sample(f, min, max, n); data[0] = 0.0; double scaling_coefficient = FastMath.sqrt(2.0 / n); return FastFourierTransformer.scaleArray(fst(data), scaling_coefficient); } /** * Inversely transform the given real data set. *

* The formula is fk = (2/N) ∑n=0N-1 Fn sin(π nk/N) *

* * @param f the real data array to be inversely transformed * @return the real inversely transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform(double f[]) throws IllegalArgumentException { double scaling_coefficient = 2.0 / f.length; return FastFourierTransformer.scaleArray(fst(f), scaling_coefficient); } /** * Inversely transform the given real function, sampled on the given interval. *

* The formula is fk = (2/N) ∑n=0N-1 Fn sin(π nk/N) *

* * @param f the function to be sampled and inversely transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real inversely transformed array * @throws FunctionEvaluationException if function cannot be evaluated at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform(UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { double data[] = FastFourierTransformer.sample(f, min, max, n); data[0] = 0.0; double scaling_coefficient = 2.0 / n; return FastFourierTransformer.scaleArray(fst(data), scaling_coefficient); } /** * Inversely transform the given real data set. *

* The formula is fk = √(2/N) ∑n=0N-1 Fn sin(π nk/N) *

* * @param f the real data array to be inversely transformed * @return the real inversely transformed array * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform2(double f[]) throws IllegalArgumentException { return transform2(f); } /** * Inversely transform the given real function, sampled on the given interval. *

* The formula is fk = √(2/N) ∑n=0N-1 Fn sin(π nk/N) *

* * @param f the function to be sampled and inversely transformed * @param min the lower bound for the interval * @param max the upper bound for the interval * @param n the number of sample points * @return the real inversely transformed array * @throws FunctionEvaluationException if function cannot be evaluated at some point * @throws IllegalArgumentException if any parameters are invalid */ public double[] inversetransform2(UnivariateRealFunction f, double min, double max, int n) throws FunctionEvaluationException, IllegalArgumentException { return transform2(f, min, max, n); } /** * Perform the FST algorithm (including inverse). * * @param f the real data array to be transformed * @return the real transformed array * @throws IllegalArgumentException if any parameters are invalid */ protected double[] fst(double f[]) throws IllegalArgumentException { final double transformed[] = new double[f.length]; FastFourierTransformer.verifyDataSet(f); if (f[0] != 0.0) { throw MathRuntimeException.createIllegalArgumentException( LocalizedFormats.FIRST_ELEMENT_NOT_ZERO, f[0]); } final int n = f.length; if (n == 1) { // trivial case transformed[0] = 0.0; return transformed; } // construct a new array and perform FFT on it final double[] x = new double[n]; x[0] = 0.0; x[n >> 1] = 2.0 * f[n >> 1]; for (int i = 1; i < (n >> 1); i++) { final double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n-i]); final double b = 0.5 * (f[i] - f[n-i]); x[i] = a + b; x[n - i] = a - b; } FastFourierTransformer transformer = new FastFourierTransformer(); Complex y[] = transformer.transform(x); // reconstruct the FST result for the original array transformed[0] = 0.0; transformed[1] = 0.5 * y[0].getReal(); for (int i = 1; i < (n >> 1); i++) { transformed[2 * i] = -y[i].getImaginary(); transformed[2 * i + 1] = y[i].getReal() + transformed[2 * i - 1]; } return transformed; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy