org.apache.flink.runtime.executiongraph.ExecutionJobVertex Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.runtime.executiongraph;
import org.apache.flink.annotation.VisibleForTesting;
import org.apache.flink.api.common.Archiveable;
import org.apache.flink.api.common.ExecutionConfig;
import org.apache.flink.api.common.JobID;
import org.apache.flink.api.common.accumulators.Accumulator;
import org.apache.flink.api.common.accumulators.AccumulatorHelper;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.JobManagerOptions;
import org.apache.flink.core.io.InputSplit;
import org.apache.flink.core.io.InputSplitAssigner;
import org.apache.flink.core.io.InputSplitSource;
import org.apache.flink.runtime.JobException;
import org.apache.flink.runtime.accumulators.StringifiedAccumulatorResult;
import org.apache.flink.runtime.blob.BlobWriter;
import org.apache.flink.runtime.blob.PermanentBlobKey;
import org.apache.flink.runtime.concurrent.FutureUtils;
import org.apache.flink.runtime.execution.ExecutionState;
import org.apache.flink.runtime.jobgraph.ExecutionVertexID;
import org.apache.flink.runtime.jobgraph.IntermediateDataSet;
import org.apache.flink.runtime.jobgraph.IntermediateDataSetID;
import org.apache.flink.runtime.jobgraph.JobEdge;
import org.apache.flink.runtime.jobgraph.JobVertex;
import org.apache.flink.runtime.jobgraph.JobVertexID;
import org.apache.flink.runtime.jobgraph.OperatorDescriptor;
import org.apache.flink.runtime.jobgraph.OperatorID;
import org.apache.flink.runtime.jobmanager.scheduler.CoLocationGroup;
import org.apache.flink.runtime.jobmanager.scheduler.LocationPreferenceConstraint;
import org.apache.flink.runtime.jobmanager.scheduler.SlotSharingGroup;
import org.apache.flink.runtime.jobmaster.slotpool.SlotProvider;
import org.apache.flink.runtime.state.KeyGroupRangeAssignment;
import org.apache.flink.types.Either;
import org.apache.flink.util.OptionalFailure;
import org.apache.flink.util.Preconditions;
import org.apache.flink.util.SerializedValue;
import org.slf4j.Logger;
import javax.annotation.Nullable;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.CompletableFuture;
import static org.apache.flink.util.Preconditions.checkState;
/**
* An {@code ExecutionJobVertex} is part of the {@link ExecutionGraph}, and the peer
* to the {@link JobVertex}.
*
* The {@code ExecutionJobVertex} corresponds to a parallelized operation. It
* contains an {@link ExecutionVertex} for each parallel instance of that operation.
*/
public class ExecutionJobVertex implements AccessExecutionJobVertex, Archiveable {
/** Use the same log for all ExecutionGraph classes. */
private static final Logger LOG = ExecutionGraph.LOG;
public static final int VALUE_NOT_SET = -1;
private final Object stateMonitor = new Object();
private final ExecutionGraph graph;
private final JobVertex jobVertex;
/**
* The IDs of all operators contained in this execution job vertex.
*
* The ID's are stored depth-first post-order; for the forking chain below the ID's would be stored as [D, E, B, C, A].
* A - B - D
* \ \
* C E
* This is the same order that operators are stored in the {@code StreamTask}.
*/
private final List operatorIDs;
/**
* The alternative IDs of all operators contained in this execution job vertex.
*
* The ID's are in the same order as {@link ExecutionJobVertex#operatorIDs}.
*/
private final List userDefinedOperatorIds;
private final ExecutionVertex[] taskVertices;
private final IntermediateResult[] producedDataSets;
private final List inputs;
private final int parallelism;
private final SlotSharingGroup slotSharingGroup;
private final CoLocationGroup coLocationGroup;
private final Map inputSplitsMap;
private final boolean maxParallelismConfigured;
private int maxParallelism;
/**
* Serialized task information which is for all sub tasks the same. Thus, it avoids to
* serialize the same information multiple times in order to create the
* TaskDeploymentDescriptors.
*/
private SerializedValue serializedTaskInformation;
/**
* The key of the offloaded task information BLOB containing {@link #serializedTaskInformation}
* or null if not offloaded.
*/
@Nullable
private PermanentBlobKey taskInformationBlobKey = null;
private Either, PermanentBlobKey> taskInformationOrBlobKey = null;
private final Map splitAssignerMap;
/**
* Convenience constructor for testing.
*/
@VisibleForTesting
ExecutionJobVertex(
ExecutionGraph graph,
JobVertex jobVertex,
int defaultParallelism,
Time timeout) throws JobException {
this(graph, jobVertex, defaultParallelism, timeout, 1L, System.currentTimeMillis());
}
public ExecutionJobVertex(
ExecutionGraph graph,
JobVertex jobVertex,
int defaultParallelism,
Time timeout,
long initialGlobalModVersion,
long createTimestamp) throws JobException {
if (graph == null || jobVertex == null) {
throw new NullPointerException();
}
this.graph = graph;
this.jobVertex = jobVertex;
int vertexParallelism = jobVertex.getParallelism();
int numTaskVertices = vertexParallelism > 0 ? vertexParallelism : defaultParallelism;
final int configuredMaxParallelism = jobVertex.getMaxParallelism();
this.maxParallelismConfigured = (VALUE_NOT_SET != configuredMaxParallelism);
// if no max parallelism was configured by the user, we calculate and set a default
setMaxParallelismInternal(maxParallelismConfigured ?
configuredMaxParallelism : KeyGroupRangeAssignment.computeDefaultMaxParallelism(numTaskVertices));
// verify that our parallelism is not higher than the maximum parallelism
if (numTaskVertices > maxParallelism) {
throw new JobException(
String.format("Vertex %s's parallelism (%s) is higher than the max parallelism (%s). Please lower the parallelism or increase the max parallelism.",
jobVertex.getName(),
numTaskVertices,
maxParallelism));
}
this.parallelism = numTaskVertices;
this.serializedTaskInformation = null;
this.taskVertices = new ExecutionVertex[numTaskVertices];
this.operatorIDs = Collections.unmodifiableList(jobVertex.getOperatorIDs());
this.userDefinedOperatorIds = Collections.unmodifiableList(jobVertex.getUserDefinedOperatorIDs());
this.inputs = new ArrayList<>(jobVertex.getInputs().size());
// take the sharing group
this.slotSharingGroup = jobVertex.getSlotSharingGroup();
this.coLocationGroup = jobVertex.getCoLocationGroup();
// setup the coLocation group
if (coLocationGroup != null && slotSharingGroup == null) {
throw new JobException("Vertex uses a co-location constraint without using slot sharing");
}
// create the intermediate results
this.producedDataSets = new IntermediateResult[jobVertex.getNumberOfProducedIntermediateDataSets()];
for (int i = 0; i < jobVertex.getProducedDataSets().size(); i++) {
final IntermediateDataSet result = jobVertex.getProducedDataSets().get(i);
this.producedDataSets[i] = new IntermediateResult(
result.getId(),
this,
numTaskVertices,
result.getResultType());
}
Configuration jobConfiguration = graph.getJobConfiguration();
int maxPriorAttemptsHistoryLength = jobConfiguration != null ?
jobConfiguration.getInteger(JobManagerOptions.MAX_ATTEMPTS_HISTORY_SIZE) :
JobManagerOptions.MAX_ATTEMPTS_HISTORY_SIZE.defaultValue();
// create all task vertices
for (int i = 0; i < numTaskVertices; i++) {
ExecutionVertex vertex = new ExecutionVertex(
this,
i,
producedDataSets,
timeout,
initialGlobalModVersion,
createTimestamp,
maxPriorAttemptsHistoryLength);
this.taskVertices[i] = vertex;
}
// sanity check for the double referencing between intermediate result partitions and execution vertices
for (IntermediateResult ir : this.producedDataSets) {
if (ir.getNumberOfAssignedPartitions() != parallelism) {
throw new RuntimeException("The intermediate result's partitions were not correctly assigned.");
}
}
if (jobVertex.getInputSplitSources() != null) {
// lazy assignment
this.inputSplitsMap = new HashMap<>();
this.splitAssignerMap = new HashMap<>();
} else {
this.inputSplitsMap = null;
this.splitAssignerMap = null;
}
}
public void setUpInputSplits(Map inputSplitsInLog) throws JobException {
if (inputSplitsMap != null && inputSplitsMap.size() > 0) {
return;
}
// set up the input splits, if the vertex has any
try {
Map> splitSourceMap = jobVertex.getInputSplitSources();
if (splitSourceMap != null) {
Thread currentThread = Thread.currentThread();
ClassLoader oldContextClassLoader = currentThread.getContextClassLoader();
currentThread.setContextClassLoader(graph.getUserClassLoader());
try {
for (Map.Entry> entry : splitSourceMap.entrySet()) {
OperatorID operatorID = entry.getKey();
@SuppressWarnings("unchecked")
InputSplitSource splitSource = ((InputSplitSource) entry.getValue());
InputSplit[] inputSplits = inputSplitsInLog != null ? inputSplitsInLog.get(operatorID) : null;
if (inputSplits == null) {
inputSplits = splitSource.createInputSplits(parallelism);
}
if (inputSplits != null) {
this.inputSplitsMap.put(operatorID, inputSplits);
this.splitAssignerMap.put(operatorID, splitSource.getInputSplitAssigner(inputSplits));
}
}
getGraph().getGraphManager().notifyInputSplitsCreated(getJobVertexId(), inputSplitsMap);
} finally {
currentThread.setContextClassLoader(oldContextClassLoader);
}
}
}
catch (Throwable t) {
throw new JobException("Creating the input splits caused an error: " + t.getMessage(), t);
}
}
/**
* Returns a list containing the IDs of all operators contained in this execution job vertex.
*
* @return list containing the IDs of all contained operators
*/
public List getOperatorIDs() {
return operatorIDs;
}
/**
* Returns a list containing the alternative IDs of all operators contained in this execution job vertex.
*
* @return list containing alternative the IDs of all contained operators
*/
public List getUserDefinedOperatorIDs() {
return userDefinedOperatorIds;
}
public void setMaxParallelism(int maxParallelismDerived) {
checkState(!maxParallelismConfigured,
"Attempt to override a configured max parallelism. Configured: " + this.maxParallelism
+ ", argument: " + maxParallelismDerived);
setMaxParallelismInternal(maxParallelismDerived);
}
private void setMaxParallelismInternal(int maxParallelism) {
if (maxParallelism == ExecutionConfig.PARALLELISM_AUTO_MAX) {
maxParallelism = KeyGroupRangeAssignment.UPPER_BOUND_MAX_PARALLELISM;
}
Preconditions.checkArgument(maxParallelism > 0
&& maxParallelism <= KeyGroupRangeAssignment.UPPER_BOUND_MAX_PARALLELISM,
"Overriding max parallelism is not in valid bounds (1..%s), found: %s",
KeyGroupRangeAssignment.UPPER_BOUND_MAX_PARALLELISM, maxParallelism);
this.maxParallelism = maxParallelism;
}
public ExecutionGraph getGraph() {
return graph;
}
public JobVertex getJobVertex() {
return jobVertex;
}
@Override
public String getName() {
return getJobVertex().getName();
}
@Override
public int getParallelism() {
return parallelism;
}
@Override
public int getMaxParallelism() {
return maxParallelism;
}
public boolean isMaxParallelismConfigured() {
return maxParallelismConfigured;
}
public JobID getJobId() {
return graph.getJobID();
}
@Override
public JobVertexID getJobVertexId() {
return jobVertex.getID();
}
@Override
public ExecutionVertex[] getTaskVertices() {
return taskVertices;
}
public IntermediateResult[] getProducedDataSets() {
return producedDataSets;
}
public InputSplitAssigner getSplitAssigner(OperatorID operatorID) {
return splitAssignerMap == null ? null : splitAssignerMap.get(operatorID);
}
public SlotSharingGroup getSlotSharingGroup() {
return slotSharingGroup;
}
public CoLocationGroup getCoLocationGroup() {
return coLocationGroup;
}
public List getInputs() {
return inputs;
}
public Either, PermanentBlobKey> getTaskInformationOrBlobKey() throws IOException {
// only one thread should offload the task information, so let's also let only one thread
// serialize the task information!
synchronized (stateMonitor) {
if (taskInformationOrBlobKey == null) {
final BlobWriter blobWriter = graph.getBlobWriter();
final TaskInformation taskInformation = new TaskInformation(
jobVertex.getID(),
jobVertex.getName(),
parallelism,
maxParallelism,
jobVertex.getInvokableClassName(),
jobVertex.getConfiguration());
taskInformationOrBlobKey = BlobWriter.serializeAndTryOffload(
taskInformation,
getJobId(),
blobWriter);
}
}
return taskInformationOrBlobKey;
}
@Override
public ExecutionState getAggregateState() {
int[] num = new int[ExecutionState.values().length];
for (ExecutionVertex vertex : this.taskVertices) {
num[vertex.getExecutionState().ordinal()]++;
}
return getAggregateJobVertexState(num, parallelism);
}
private String generateDebugString() {
return "ExecutionJobVertex" +
"(" + jobVertex.getName() + " | " + jobVertex.getID() + ")" +
"{" +
"parallelism=" + parallelism +
", maxParallelism=" + getMaxParallelism() +
", maxParallelismConfigured=" + maxParallelismConfigured +
'}';
}
//---------------------------------------------------------------------------------------------
public void connectToPredecessors(Map intermediateDataSets) throws JobException {
List inputs = jobVertex.getInputs();
if (LOG.isDebugEnabled()) {
LOG.debug(String.format("Connecting ExecutionJobVertex %s (%s) to %d predecessors.", jobVertex.getID(), jobVertex.getName(), inputs.size()));
}
for (int num = 0; num < inputs.size(); num++) {
JobEdge edge = inputs.get(num);
if (LOG.isDebugEnabled()) {
if (edge.getSource() == null) {
LOG.debug(String.format("Connecting input %d of vertex %s (%s) to intermediate result referenced via ID %s, %s.",
num, jobVertex.getID(), jobVertex.getName(), edge.getSourceId(), edge.getDistributionPattern()));
} else {
LOG.debug(String.format("Connecting input %d of vertex %s (%s) to intermediate result referenced via predecessor %s (%s), %s, %s",
num, jobVertex.getID(), jobVertex.getName(), edge.getSource().getProducer().getID(),
edge.getSource().getProducer().getName(), edge.getDistributionPattern(), edge.getSource().getResultType()));
}
}
// fetch the intermediate result via ID. if it does not exist, then it either has not been created, or the order
// in which this method is called for the job vertices is not a topological order
IntermediateResult ires = intermediateDataSets.get(edge.getSourceId());
if (ires == null) {
throw new JobException("Cannot connect this job graph to the previous graph. No previous intermediate result found for ID "
+ edge.getSourceId());
}
this.inputs.add(ires);
int consumerIndex = ires.registerConsumer();
// Record execution edges of current input for each execution vertices
ArrayList> executionEdges = new ArrayList<>(parallelism);
for (int i = 0; i < parallelism; i++) {
executionEdges.add(new ArrayList<>());
}
for (int i = 0; i < ires.getPartitions().length; i++) {
IntermediateResultPartition partition = ires.getPartitions()[i];
Collection consumerExecutionVertices = edge.getConsumerExecutionVertices(i);
for (ExecutionVertexID executionVertexID : consumerExecutionVertices) {
ExecutionVertex consumerVertex = taskVertices[executionVertexID.getSubTaskIndex()];
ExecutionEdge ee = new ExecutionEdge(partition, consumerVertex, num);
partition.addConsumer(ee, consumerIndex);
executionEdges.get(executionVertexID.getSubTaskIndex()).add(ee);
}
}
for (int i = 0; i < parallelism; i++) {
ExecutionVertex ev = taskVertices[i];
ev.setInputExecutionEdges(executionEdges.get(i).toArray(new ExecutionEdge[]{}), num);
}
}
}
//---------------------------------------------------------------------------------------------
// Actions
//---------------------------------------------------------------------------------------------
/**
* Schedules all execution vertices of this ExecutionJobVertex.
*
* @param slotProvider to allocate the slots from
* @param queued if the allocations can be queued
* @param locationPreferenceConstraint constraint for the location preferences
* @return Future which is completed once all {@link Execution} could be deployed
*/
public CompletableFuture scheduleAll(
SlotProvider slotProvider,
boolean queued,
LocationPreferenceConstraint locationPreferenceConstraint) {
final ExecutionVertex[] vertices = this.taskVertices;
final ArrayList> scheduleFutures = new ArrayList<>(vertices.length);
// kick off the tasks
for (ExecutionVertex ev : vertices) {
scheduleFutures.add(ev.scheduleForExecution(slotProvider, queued, locationPreferenceConstraint));
}
return FutureUtils.waitForAll(scheduleFutures);
}
/**
* Acquires a slot for all the execution vertices of this ExecutionJobVertex. The method returns
* pairs of the slots and execution attempts, to ease correlation between vertices and execution
* attempts.
*
* If this method throws an exception, it makes sure to release all so far requested slots.
*
* @param resourceProvider The resource provider from whom the slots are requested.
* @param queued if the allocation can be queued
* @param locationPreferenceConstraint constraint for the location preferences
* @param allocationTimeout timeout for allocating the individual slots
*/
public Collection> allocateResourcesForAll(
SlotProvider resourceProvider,
boolean queued,
LocationPreferenceConstraint locationPreferenceConstraint,
Time allocationTimeout) {
final ExecutionVertex[] vertices = this.taskVertices;
final CompletableFuture[] slots = new CompletableFuture[vertices.length];
// try to acquire a slot future for each execution.
// we store the execution with the future just to be on the safe side
for (int i = 0; i < vertices.length; i++) {
// allocate the next slot (future)
final Execution exec = vertices[i].getCurrentExecutionAttempt();
final CompletableFuture allocationFuture = exec.allocateAndAssignSlotForExecution(
resourceProvider,
queued,
locationPreferenceConstraint,
allocationTimeout);
slots[i] = allocationFuture;
}
// all good, we acquired all slots
return Arrays.asList(slots);
}
/**
* Cancels all currently running vertex executions.
*/
public void cancel() {
for (ExecutionVertex ev : getTaskVertices()) {
ev.cancel();
}
}
/**
* Cancels all currently running vertex executions.
*
* @return A future that is complete once all tasks have canceled.
*/
public CompletableFuture cancelWithFuture() {
// we collect all futures from the task cancellations
CompletableFuture[] futures = Arrays.stream(getTaskVertices())
.map(ExecutionVertex::cancel)
.>toArray(CompletableFuture[]::new);
// return a conjunct future, which is complete once all individual tasks are canceled
return CompletableFuture.allOf(futures);
}
public void fail(Throwable t) {
for (ExecutionVertex ev : getTaskVertices()) {
ev.fail(t);
}
}
public void resetForNewExecution(final long timestamp, final long expectedGlobalModVersion)
throws GlobalModVersionMismatch {
synchronized (stateMonitor) {
// check and reset the sharing groups with scheduler hints
if (slotSharingGroup != null) {
slotSharingGroup.clearTaskAssignment();
}
for (int i = 0; i < parallelism; i++) {
taskVertices[i].resetForNewExecution(timestamp, expectedGlobalModVersion);
taskVertices[i].clearAssignedInputSplits();
}
// set up the input splits again
try {
if (this.inputSplitsMap != null) {
splitAssignerMap.clear();
Map> splitSourceMap = jobVertex.getInputSplitSources();
for (Map.Entry entry : inputSplitsMap.entrySet()) {
OperatorID operatorID = entry.getKey();
splitAssignerMap.put(operatorID,
((InputSplitSource) splitSourceMap.get(operatorID)).getInputSplitAssigner(entry.getValue()));
}
}
} catch (Throwable t) {
throw new RuntimeException("Re-creating the input split assigner failed: " + t.getMessage(), t);
}
}
}
// --------------------------------------------------------------------------------------------
// Accumulators / Metrics
// --------------------------------------------------------------------------------------------
public StringifiedAccumulatorResult[] getAggregatedUserAccumulatorsStringified() {
Map>> userAccumulators = new HashMap<>();
for (ExecutionVertex vertex : taskVertices) {
Map> next = vertex.getCurrentExecutionAttempt().getUserAccumulators();
if (next != null) {
AccumulatorHelper.mergeInto(userAccumulators, next);
}
}
return StringifiedAccumulatorResult.stringifyAccumulatorResults(userAccumulators);
}
@Override
public List getOperatorDescriptors() {
return jobVertex.getOperatorDescriptors();
}
// --------------------------------------------------------------------------------------------
// Archiving
// --------------------------------------------------------------------------------------------
@Override
public ArchivedExecutionJobVertex archive() {
return new ArchivedExecutionJobVertex(this);
}
// ------------------------------------------------------------------------
// Static Utilities
// ------------------------------------------------------------------------
/**
* A utility function that computes an "aggregated" state for the vertex.
*
* This state is not used anywhere in the coordination, but can be used for display
* in dashboards to as a summary for how the particular parallel operation represented by
* this ExecutionJobVertex is currently behaving.
*
*
For example, if at least one parallel task is failed, the aggregate state is failed.
* If not, and at least one parallel task is cancelling (or cancelled), the aggregate state
* is cancelling (or cancelled). If all tasks are finished, the aggregate state is finished,
* and so on.
*
* @param verticesPerState The number of vertices in each state (indexed by the ordinal of
* the ExecutionState values).
* @param parallelism The parallelism of the ExecutionJobVertex
*
* @return The aggregate state of this ExecutionJobVertex.
*/
public static ExecutionState getAggregateJobVertexState(int[] verticesPerState, int parallelism) {
if (verticesPerState == null || verticesPerState.length != ExecutionState.values().length) {
throw new IllegalArgumentException("Must provide an array as large as there are execution states.");
}
if (verticesPerState[ExecutionState.FAILED.ordinal()] > 0) {
return ExecutionState.FAILED;
}
if (verticesPerState[ExecutionState.CANCELING.ordinal()] > 0) {
return ExecutionState.CANCELING;
}
else if (verticesPerState[ExecutionState.CANCELED.ordinal()] > 0) {
return ExecutionState.CANCELED;
}
else if (verticesPerState[ExecutionState.RUNNING.ordinal()] > 0) {
return ExecutionState.RUNNING;
}
else if (verticesPerState[ExecutionState.FINISHED.ordinal()] > 0) {
return verticesPerState[ExecutionState.FINISHED.ordinal()] == parallelism ?
ExecutionState.FINISHED : ExecutionState.RUNNING;
}
else {
// all else collapses under created
return ExecutionState.CREATED;
}
}
public static Map includeLegacyJobVertexIDs(
Map tasks) {
Map expanded = new HashMap<>(2 * tasks.size());
// first include all new ids
expanded.putAll(tasks);
// now expand and add legacy ids
for (ExecutionJobVertex executionJobVertex : tasks.values()) {
if (null != executionJobVertex) {
JobVertex jobVertex = executionJobVertex.getJobVertex();
if (null != jobVertex) {
List alternativeIds = jobVertex.getIdAlternatives();
for (JobVertexID jobVertexID : alternativeIds) {
ExecutionJobVertex old = expanded.put(jobVertexID, executionJobVertex);
checkState(null == old || old.equals(executionJobVertex),
"Ambiguous jobvertex id detected during expansion to legacy ids.");
}
}
}
}
return expanded;
}
public static Map includeAlternativeOperatorIDs(
Map operatorMapping) {
Map expanded = new HashMap<>(2 * operatorMapping.size());
// first include all existing ids
expanded.putAll(operatorMapping);
// now expand and add user-defined ids
for (ExecutionJobVertex executionJobVertex : operatorMapping.values()) {
if (executionJobVertex != null) {
JobVertex jobVertex = executionJobVertex.getJobVertex();
if (jobVertex != null) {
for (OperatorID operatorID : jobVertex.getUserDefinedOperatorIDs()) {
if (operatorID != null) {
expanded.put(operatorID, executionJobVertex);
}
}
}
}
}
return expanded;
}
}