org.apache.flink.table.plan.schema.BaseRowSchema.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.table.plan.schema
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.table.api.types.{DataType, InternalType, RowType}
import org.apache.flink.table.calcite.FlinkTypeFactory
import org.apache.flink.table.dataformat.{BaseRow, BinaryRow}
import org.apache.flink.table.typeutils.BaseRowTypeInfo
import org.apache.calcite.rel.`type`.RelDataType
import scala.collection.JavaConverters._
/**
* Schema that describes both a logical row type and physical field types.
*/
class BaseRowSchema(private val logicalRowType: RelDataType) {
private lazy val physicalRowFieldTypes: Seq[TypeInformation[_]] =
logicalRowType.getFieldList.asScala map { f => FlinkTypeFactory.toTypeInfo(f.getType) }
/**
* Returns the arity of the schema.
*/
def arity: Int = logicalRowType.getFieldCount
/**
* Returns the [[RelDataType]] of the schema
*/
def relDataType: RelDataType = logicalRowType
/**
* Returns the [[TypeInformation]] of of the schema
*/
def typeInfo(): BaseRowTypeInfo = {
val logicalFieldNames = logicalRowType.getFieldNames.asScala
new BaseRowTypeInfo(fieldTypeInfos.toArray, logicalFieldNames.toArray)
}
def internalType(): RowType = {
val logicalFieldNames = logicalRowType.getFieldNames.asScala
val types = logicalRowType.getFieldList.asScala.map {
f => FlinkTypeFactory.toInternalType(f.getType)
}.toArray[DataType]
new RowType(types, logicalFieldNames.toArray)
}
/**
* Returns the [[TypeInformation]] of fields of the schema
*/
def fieldTypeInfos: Seq[TypeInformation[_]] = physicalRowFieldTypes
def fieldTypes: Seq[InternalType] = logicalRowType.getFieldList.asScala.map {
f => FlinkTypeFactory.toInternalType(f.getType)
}
/**
* Returns the fields names
*/
def fieldNames: Seq[String] = logicalRowType.getFieldNames.asScala
/**
* Returns a projected [[TypeInformation]]s of the schema.
*/
def projectedTypes(fields: Array[Int]): Array[TypeInformation[_]] = {
fields.map(fieldTypeInfos(_))
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy