org.apache.flink.table.runtime.range.ReservoirSamplerWithoutReplacement Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.table.runtime.range;
import org.apache.flink.annotation.Internal;
import org.apache.flink.api.java.sampling.IntermediateSampleData;
import org.apache.flink.table.codegen.Projection;
import org.apache.flink.table.dataformat.BaseRow;
import org.apache.flink.util.Preconditions;
import org.apache.flink.util.XORShiftRandom;
import java.io.Serializable;
import java.util.Iterator;
import java.util.PriorityQueue;
import java.util.Random;
/**
* Sample the records.
*/
@Internal
public class ReservoirSamplerWithoutReplacement implements Serializable {
private final int numSamples;
private final Random random;
private IntermediateSampleData smallest = null;
private final PriorityQueue> queue;
private int index = 0;
private Projection projection;
/**
* Create a new sampler with reservoir size and a supplied random number generator.
*
* @param numSamples Maximum number of samples to retain in reservoir, must be non-negative.
*/
ReservoirSamplerWithoutReplacement(int numSamples, long seed) {
Preconditions.checkArgument(numSamples >= 0, "numSamples should be non-negative.");
this.numSamples = numSamples;
this.random = new XORShiftRandom(seed);
this.queue = new PriorityQueue<>(numSamples);
}
public void setProjection(Projection projection) {
this.projection = projection;
}
void collectPartitionData(BaseRow baseRow) {
double weight = random.nextDouble();
if (index < numSamples) {
// Fill the queue with first K elements from input.
addQueue(weight, projection.apply(baseRow));
smallest = queue.peek();
} else {
// Remove the element with the smallest weight,
// and append current element into the queue.
if (weight > smallest.getWeight()) {
queue.remove();
addQueue(weight, projection.apply(baseRow));
smallest = queue.peek();
}
}
index++;
}
void collectSampleData(IntermediateSampleData sampleData) {
if (index < numSamples) {
// Fill the queue with first K elements from input.
addQueue(sampleData.getWeight(), projection.apply(sampleData.getElement()));
smallest = queue.peek();
} else {
// Remove the element with the smallest weight,
// and append current element into the queue.
if (sampleData.getWeight() > smallest.getWeight()) {
queue.remove();
addQueue(sampleData.getWeight(), projection.apply(sampleData.getElement()));
smallest = queue.peek();
}
}
index++;
}
private void addQueue(double weight, BaseRow row) {
queue.add(new IntermediateSampleData<>(weight, row));
}
Iterator> sample() {
return queue.iterator();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy