All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.calcite.sql2rel.SqlToRelConverter Maven / Gradle / Ivy

There is a newer version: 1.17.0-flink-r3
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to you under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.calcite.sql2rel;

import org.apache.calcite.avatica.util.Spaces;
import org.apache.calcite.linq4j.Ord;
import org.apache.calcite.plan.Convention;
import org.apache.calcite.plan.RelOptCluster;
import org.apache.calcite.plan.RelOptPlanner;
import org.apache.calcite.plan.RelOptSamplingParameters;
import org.apache.calcite.plan.RelOptTable;
import org.apache.calcite.plan.RelOptUtil;
import org.apache.calcite.plan.RelTraitSet;
import org.apache.calcite.prepare.Prepare;
import org.apache.calcite.prepare.RelOptTableImpl;
import org.apache.calcite.rel.RelCollation;
import org.apache.calcite.rel.RelCollationTraitDef;
import org.apache.calcite.rel.RelCollations;
import org.apache.calcite.rel.RelFieldCollation;
import org.apache.calcite.rel.RelNode;
import org.apache.calcite.rel.RelRoot;
import org.apache.calcite.rel.SingleRel;
import org.apache.calcite.rel.core.AggregateCall;
import org.apache.calcite.rel.core.Collect;
import org.apache.calcite.rel.core.CorrelationId;
import org.apache.calcite.rel.core.Filter;
import org.apache.calcite.rel.core.Join;
import org.apache.calcite.rel.core.JoinInfo;
import org.apache.calcite.rel.core.JoinRelType;
import org.apache.calcite.rel.core.Project;
import org.apache.calcite.rel.core.RelFactories;
import org.apache.calcite.rel.core.Sample;
import org.apache.calcite.rel.core.Sort;
import org.apache.calcite.rel.core.TableScan;
import org.apache.calcite.rel.core.Uncollect;
import org.apache.calcite.rel.core.Values;
import org.apache.calcite.rel.logical.LogicalAggregate;
import org.apache.calcite.rel.logical.LogicalCorrelate;
import org.apache.calcite.rel.logical.LogicalFilter;
import org.apache.calcite.rel.logical.LogicalIntersect;
import org.apache.calcite.rel.logical.LogicalJoin;
import org.apache.calcite.rel.logical.LogicalMatch;
import org.apache.calcite.rel.logical.LogicalMinus;
import org.apache.calcite.rel.logical.LogicalProject;
import org.apache.calcite.rel.logical.LogicalSnapshot;
import org.apache.calcite.rel.logical.LogicalSort;
import org.apache.calcite.rel.logical.LogicalTableFunctionScan;
import org.apache.calcite.rel.logical.LogicalTableModify;
import org.apache.calcite.rel.logical.LogicalTableScan;
import org.apache.calcite.rel.logical.LogicalUnion;
import org.apache.calcite.rel.logical.LogicalValues;
import org.apache.calcite.rel.metadata.JaninoRelMetadataProvider;
import org.apache.calcite.rel.metadata.RelColumnMapping;
import org.apache.calcite.rel.metadata.RelMetadataQuery;
import org.apache.calcite.rel.stream.Delta;
import org.apache.calcite.rel.stream.LogicalDelta;
import org.apache.calcite.rel.type.RelDataType;
import org.apache.calcite.rel.type.RelDataTypeFactory;
import org.apache.calcite.rel.type.RelDataTypeField;
import org.apache.calcite.rex.RexBuilder;
import org.apache.calcite.rex.RexCall;
import org.apache.calcite.rex.RexCallBinding;
import org.apache.calcite.rex.RexCorrelVariable;
import org.apache.calcite.rex.RexDynamicParam;
import org.apache.calcite.rex.RexFieldAccess;
import org.apache.calcite.rex.RexFieldCollation;
import org.apache.calcite.rex.RexInputRef;
import org.apache.calcite.rex.RexLiteral;
import org.apache.calcite.rex.RexNode;
import org.apache.calcite.rex.RexPatternFieldRef;
import org.apache.calcite.rex.RexRangeRef;
import org.apache.calcite.rex.RexShuttle;
import org.apache.calcite.rex.RexSubQuery;
import org.apache.calcite.rex.RexUtil;
import org.apache.calcite.rex.RexWindowBound;
import org.apache.calcite.schema.ColumnStrategy;
import org.apache.calcite.schema.ModifiableTable;
import org.apache.calcite.schema.ModifiableView;
import org.apache.calcite.schema.Table;
import org.apache.calcite.schema.TranslatableTable;
import org.apache.calcite.schema.Wrapper;
import org.apache.calcite.sql.JoinConditionType;
import org.apache.calcite.sql.JoinType;
import org.apache.calcite.sql.SemiJoinType;
import org.apache.calcite.sql.SqlAggFunction;
import org.apache.calcite.sql.SqlBasicCall;
import org.apache.calcite.sql.SqlCall;
import org.apache.calcite.sql.SqlCallBinding;
import org.apache.calcite.sql.SqlDataTypeSpec;
import org.apache.calcite.sql.SqlDelete;
import org.apache.calcite.sql.SqlDynamicParam;
import org.apache.calcite.sql.SqlExplainFormat;
import org.apache.calcite.sql.SqlExplainLevel;
import org.apache.calcite.sql.SqlFunction;
import org.apache.calcite.sql.SqlIdentifier;
import org.apache.calcite.sql.SqlInsert;
import org.apache.calcite.sql.SqlIntervalQualifier;
import org.apache.calcite.sql.SqlJoin;
import org.apache.calcite.sql.SqlKind;
import org.apache.calcite.sql.SqlLiteral;
import org.apache.calcite.sql.SqlMatchRecognize;
import org.apache.calcite.sql.SqlMerge;
import org.apache.calcite.sql.SqlNode;
import org.apache.calcite.sql.SqlNodeList;
import org.apache.calcite.sql.SqlNumericLiteral;
import org.apache.calcite.sql.SqlOperator;
import org.apache.calcite.sql.SqlOperatorTable;
import org.apache.calcite.sql.SqlOrderBy;
import org.apache.calcite.sql.SqlProperty;
import org.apache.calcite.sql.SqlSampleSpec;
import org.apache.calcite.sql.SqlSelect;
import org.apache.calcite.sql.SqlSelectKeyword;
import org.apache.calcite.sql.SqlSetOperator;
import org.apache.calcite.sql.SqlSnapshot;
import org.apache.calcite.sql.SqlUnnestOperator;
import org.apache.calcite.sql.SqlUpdate;
import org.apache.calcite.sql.SqlUtil;
import org.apache.calcite.sql.SqlValuesOperator;
import org.apache.calcite.sql.SqlWindow;
import org.apache.calcite.sql.SqlWith;
import org.apache.calcite.sql.SqlWithItem;
import org.apache.calcite.sql.fun.SqlCountAggFunction;
import org.apache.calcite.sql.fun.SqlInOperator;
import org.apache.calcite.sql.fun.SqlQuantifyOperator;
import org.apache.calcite.sql.fun.SqlRowOperator;
import org.apache.calcite.sql.fun.SqlStdOperatorTable;
import org.apache.calcite.sql.parser.SqlParserPos;
import org.apache.calcite.sql.type.SqlReturnTypeInference;
import org.apache.calcite.sql.type.SqlTypeName;
import org.apache.calcite.sql.type.SqlTypeUtil;
import org.apache.calcite.sql.type.TableFunctionReturnTypeInference;
import org.apache.calcite.sql.util.SqlBasicVisitor;
import org.apache.calcite.sql.util.SqlVisitor;
import org.apache.calcite.sql.validate.AggregatingSelectScope;
import org.apache.calcite.sql.validate.CollectNamespace;
import org.apache.calcite.sql.validate.DelegatingScope;
import org.apache.calcite.sql.validate.ListScope;
import org.apache.calcite.sql.validate.MatchRecognizeScope;
import org.apache.calcite.sql.validate.ParameterScope;
import org.apache.calcite.sql.validate.SelectScope;
import org.apache.calcite.sql.validate.SqlMonotonicity;
import org.apache.calcite.sql.validate.SqlNameMatcher;
import org.apache.calcite.sql.validate.SqlQualified;
import org.apache.calcite.sql.validate.SqlUserDefinedTableFunction;
import org.apache.calcite.sql.validate.SqlUserDefinedTableMacro;
import org.apache.calcite.sql.validate.SqlValidator;
import org.apache.calcite.sql.validate.SqlValidatorImpl;
import org.apache.calcite.sql.validate.SqlValidatorNamespace;
import org.apache.calcite.sql.validate.SqlValidatorScope;
import org.apache.calcite.sql.validate.SqlValidatorTable;
import org.apache.calcite.sql.validate.SqlValidatorUtil;
import org.apache.calcite.tools.RelBuilder;
import org.apache.calcite.tools.RelBuilderFactory;
import org.apache.calcite.util.ImmutableBitSet;
import org.apache.calcite.util.ImmutableIntList;
import org.apache.calcite.util.Litmus;
import org.apache.calcite.util.NlsString;
import org.apache.calcite.util.NumberUtil;
import org.apache.calcite.util.Pair;
import org.apache.calcite.util.Util;
import org.apache.calcite.util.trace.CalciteTrace;

import com.google.common.base.Preconditions;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableList.Builder;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;

import org.slf4j.Logger;

import java.lang.reflect.Type;
import java.math.BigDecimal;
import java.util.AbstractList;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Deque;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
import java.util.TreeSet;
import java.util.function.Supplier;

import static org.apache.calcite.sql.SqlUtil.stripAs;

/**
 * Converts a SQL parse tree (consisting of
 * {@link org.apache.calcite.sql.SqlNode} objects) into a relational algebra
 * expression (consisting of {@link org.apache.calcite.rel.RelNode} objects).
 *
 * 

The public entry points are: {@link #convertQuery}, * {@link #convertExpression(SqlNode)}. */ public class SqlToRelConverter { //~ Static fields/initializers --------------------------------------------- protected static final Logger SQL2REL_LOGGER = CalciteTrace.getSqlToRelTracer(); private static final BigDecimal TWO = BigDecimal.valueOf(2L); /** Size of the smallest IN list that will be converted to a semijoin to a * static table. */ public static final int DEFAULT_IN_SUB_QUERY_THRESHOLD = 20; @Deprecated // to be removed before 2.0 public static final int DEFAULT_IN_SUBQUERY_THRESHOLD = DEFAULT_IN_SUB_QUERY_THRESHOLD; //~ Instance fields -------------------------------------------------------- protected final SqlValidator validator; protected final RexBuilder rexBuilder; protected final Prepare.CatalogReader catalogReader; protected final RelOptCluster cluster; private SubQueryConverter subQueryConverter; protected final List leaves = new ArrayList<>(); private final List dynamicParamSqlNodes = new ArrayList<>(); private final SqlOperatorTable opTab; protected final RelDataTypeFactory typeFactory; private final SqlNodeToRexConverter exprConverter; private int explainParamCount; public final SqlToRelConverter.Config config; private final RelBuilder relBuilder; /** * Fields used in name resolution for correlated sub-queries. */ private final Map mapCorrelToDeferred = new HashMap<>(); /** * Stack of names of datasets requested by the * TABLE(SAMPLE(<datasetName>, <query>)) construct. */ private final Deque datasetStack = new ArrayDeque<>(); /** * Mapping of non-correlated sub-queries that have been converted to their * equivalent constants. Used to avoid re-evaluating the sub-query if it's * already been evaluated. */ private final Map mapConvertedNonCorrSubqs = new HashMap<>(); public final RelOptTable.ViewExpander viewExpander; //~ Constructors ----------------------------------------------------------- /** * Creates a converter. * * @param viewExpander Preparing statement * @param validator Validator * @param catalogReader Schema * @param planner Planner * @param rexBuilder Rex builder * @param convertletTable Expression converter */ @Deprecated // to be removed before 2.0 public SqlToRelConverter( RelOptTable.ViewExpander viewExpander, SqlValidator validator, Prepare.CatalogReader catalogReader, RelOptPlanner planner, RexBuilder rexBuilder, SqlRexConvertletTable convertletTable) { this(viewExpander, validator, catalogReader, RelOptCluster.create(planner, rexBuilder), convertletTable, Config.DEFAULT); } @Deprecated // to be removed before 2.0 public SqlToRelConverter( RelOptTable.ViewExpander viewExpander, SqlValidator validator, Prepare.CatalogReader catalogReader, RelOptCluster cluster, SqlRexConvertletTable convertletTable) { this(viewExpander, validator, catalogReader, cluster, convertletTable, Config.DEFAULT); } /* Creates a converter. */ public SqlToRelConverter( RelOptTable.ViewExpander viewExpander, SqlValidator validator, Prepare.CatalogReader catalogReader, RelOptCluster cluster, SqlRexConvertletTable convertletTable, Config config) { this.viewExpander = viewExpander; this.opTab = (validator == null) ? SqlStdOperatorTable.instance() : validator.getOperatorTable(); this.validator = validator; this.catalogReader = catalogReader; this.subQueryConverter = new NoOpSubQueryConverter(); this.rexBuilder = cluster.getRexBuilder(); this.typeFactory = rexBuilder.getTypeFactory(); this.cluster = Objects.requireNonNull(cluster); this.exprConverter = new SqlNodeToRexConverterImpl(convertletTable); this.explainParamCount = 0; this.config = new ConfigBuilder().withConfig(config).build(); this.relBuilder = config.getRelBuilderFactory().create(cluster, null); } //~ Methods ---------------------------------------------------------------- /** * @return the RelOptCluster in use. */ public RelOptCluster getCluster() { return cluster; } /** * Returns the row-expression builder. */ public RexBuilder getRexBuilder() { return rexBuilder; } /** * Returns the number of dynamic parameters encountered during translation; * this must only be called after {@link #convertQuery}. * * @return number of dynamic parameters */ public int getDynamicParamCount() { return dynamicParamSqlNodes.size(); } /** * Returns the type inferred for a dynamic parameter. * * @param index 0-based index of dynamic parameter * @return inferred type, never null */ public RelDataType getDynamicParamType(int index) { SqlNode sqlNode = dynamicParamSqlNodes.get(index); if (sqlNode == null) { throw Util.needToImplement("dynamic param type inference"); } return validator.getValidatedNodeType(sqlNode); } /** * Returns the current count of the number of dynamic parameters in an * EXPLAIN PLAN statement. * * @param increment if true, increment the count * @return the current count before the optional increment */ public int getDynamicParamCountInExplain(boolean increment) { int retVal = explainParamCount; if (increment) { ++explainParamCount; } return retVal; } /** * @return mapping of non-correlated sub-queries that have been converted to * the constants that they evaluate to */ public Map getMapConvertedNonCorrSubqs() { return mapConvertedNonCorrSubqs; } /** * Adds to the current map of non-correlated converted sub-queries the * elements from another map that contains non-correlated sub-queries that * have been converted by another SqlToRelConverter. * * @param alreadyConvertedNonCorrSubqs the other map */ public void addConvertedNonCorrSubqs( Map alreadyConvertedNonCorrSubqs) { mapConvertedNonCorrSubqs.putAll(alreadyConvertedNonCorrSubqs); } /** * Sets a new SubQueryConverter. To have any effect, this must be called * before any convert method. * * @param converter new SubQueryConverter */ public void setSubQueryConverter(SubQueryConverter converter) { subQueryConverter = converter; } /** * Sets the number of dynamic parameters in the current EXPLAIN PLAN * statement. * * @param explainParamCount number of dynamic parameters in the statement */ public void setDynamicParamCountInExplain(int explainParamCount) { assert config.isExplain(); this.explainParamCount = explainParamCount; } private void checkConvertedType(SqlNode query, RelNode result) { if (query.isA(SqlKind.DML)) { return; } // Verify that conversion from SQL to relational algebra did // not perturb any type information. (We can't do this if the // SQL statement is something like an INSERT which has no // validator type information associated with its result, // hence the namespace check above.) final List validatedFields = validator.getValidatedNodeType(query).getFieldList(); final RelDataType validatedRowType = validator.getTypeFactory().createStructType( Pair.right(validatedFields), SqlValidatorUtil.uniquify(Pair.left(validatedFields), catalogReader.nameMatcher().isCaseSensitive())); final List convertedFields = result.getRowType().getFieldList().subList(0, validatedFields.size()); final RelDataType convertedRowType = validator.getTypeFactory().createStructType(convertedFields); if (!RelOptUtil.equal("validated row type", validatedRowType, "converted row type", convertedRowType, Litmus.IGNORE)) { throw new AssertionError("Conversion to relational algebra failed to " + "preserve datatypes:\n" + "validated type:\n" + validatedRowType.getFullTypeString() + "\nconverted type:\n" + convertedRowType.getFullTypeString() + "\nrel:\n" + RelOptUtil.toString(result)); } } public RelNode flattenTypes( RelNode rootRel, boolean restructure) { RelStructuredTypeFlattener typeFlattener = new RelStructuredTypeFlattener(relBuilder, rexBuilder, createToRelContext(), restructure); return typeFlattener.rewrite(rootRel); } /** * If sub-query is correlated and decorrelation is enabled, performs * decorrelation. * * @param query Query * @param rootRel Root relational expression * @return New root relational expression after decorrelation */ public RelNode decorrelate(SqlNode query, RelNode rootRel) { if (!enableDecorrelation()) { return rootRel; } final RelNode result = decorrelateQuery(rootRel); if (result != rootRel) { checkConvertedType(query, result); } return result; } /** * Walks over a tree of relational expressions, replacing each * {@link RelNode} with a 'slimmed down' relational expression that projects * only the fields required by its consumer. * *

This may make things easier for the optimizer, by removing crud that * would expand the search space, but is difficult for the optimizer itself * to do it, because optimizer rules must preserve the number and type of * fields. Hence, this transform that operates on the entire tree, similar * to the {@link RelStructuredTypeFlattener type-flattening transform}. * *

Currently this functionality is disabled in farrago/luciddb; the * default implementation of this method does nothing. * * @param ordered Whether the relational expression must produce results in * a particular order (typically because it has an ORDER BY at top level) * @param rootRel Relational expression that is at the root of the tree * @return Trimmed relational expression */ public RelNode trimUnusedFields(boolean ordered, RelNode rootRel) { // Trim fields that are not used by their consumer. if (isTrimUnusedFields()) { final RelFieldTrimmer trimmer = newFieldTrimmer(); final List collations = rootRel.getTraitSet().getTraits(RelCollationTraitDef.INSTANCE); rootRel = trimmer.trim(rootRel); if (!ordered && collations != null && !collations.isEmpty() && !collations.equals(ImmutableList.of(RelCollations.EMPTY))) { final RelTraitSet traitSet = rootRel.getTraitSet() .replace(RelCollationTraitDef.INSTANCE, collations); rootRel = rootRel.copy(traitSet, rootRel.getInputs()); } if (SQL2REL_LOGGER.isDebugEnabled()) { SQL2REL_LOGGER.debug( RelOptUtil.dumpPlan("Plan after trimming unused fields", rootRel, SqlExplainFormat.TEXT, SqlExplainLevel.EXPPLAN_ATTRIBUTES)); } } return rootRel; } /** * Creates a RelFieldTrimmer. * * @return Field trimmer */ protected RelFieldTrimmer newFieldTrimmer() { return new RelFieldTrimmer(validator, relBuilder); } /** * Converts an unvalidated query's parse tree into a relational expression. * * @param query Query to convert * @param needsValidation Whether to validate the query before converting; * false if the query has already been * validated. * @param top Whether the query is top-level, say if its result * will become a JDBC result set; false if * the query will be part of a view. */ public RelRoot convertQuery( SqlNode query, final boolean needsValidation, final boolean top) { if (needsValidation) { query = validator.validate(query); } RelMetadataQuery.THREAD_PROVIDERS.set( JaninoRelMetadataProvider.of(cluster.getMetadataProvider())); RelNode result = convertQueryRecursive(query, top, null).rel; if (top) { if (isStream(query)) { result = new LogicalDelta(cluster, result.getTraitSet(), result); } } RelCollation collation = RelCollations.EMPTY; if (!query.isA(SqlKind.DML)) { if (isOrdered(query)) { collation = requiredCollation(result); } } checkConvertedType(query, result); if (SQL2REL_LOGGER.isDebugEnabled()) { SQL2REL_LOGGER.debug( RelOptUtil.dumpPlan("Plan after converting SqlNode to RelNode", result, SqlExplainFormat.TEXT, SqlExplainLevel.EXPPLAN_ATTRIBUTES)); } final RelDataType validatedRowType = validator.getValidatedNodeType(query); return RelRoot.of(result, validatedRowType, query.getKind()) .withCollation(collation); } private static boolean isStream(SqlNode query) { return query instanceof SqlSelect && ((SqlSelect) query).isKeywordPresent(SqlSelectKeyword.STREAM); } public static boolean isOrdered(SqlNode query) { switch (query.getKind()) { case SELECT: return ((SqlSelect) query).getOrderList() != null && ((SqlSelect) query).getOrderList().size() > 0; case WITH: return isOrdered(((SqlWith) query).body); case ORDER_BY: return ((SqlOrderBy) query).orderList.size() > 0; default: return false; } } private RelCollation requiredCollation(RelNode r) { if (r instanceof Sort) { return ((Sort) r).collation; } if (r instanceof Project) { return requiredCollation(((Project) r).getInput()); } if (r instanceof Delta) { return requiredCollation(((Delta) r).getInput()); } throw new AssertionError(); } /** * Converts a SELECT statement's parse tree into a relational expression. */ public RelNode convertSelect(SqlSelect select, boolean top) { final SqlValidatorScope selectScope = validator.getWhereScope(select); final Blackboard bb = createBlackboard(selectScope, null, top); convertSelectImpl(bb, select); return bb.root; } /** * Factory method for creating translation workspace. */ protected Blackboard createBlackboard(SqlValidatorScope scope, Map nameToNodeMap, boolean top) { return new Blackboard(scope, nameToNodeMap, top); } /** * Implementation of {@link #convertSelect(SqlSelect, boolean)}; * derived class may override. */ protected void convertSelectImpl( final Blackboard bb, SqlSelect select) { convertFrom( bb, select.getFrom()); convertWhere( bb, select.getWhere()); final List orderExprList = new ArrayList<>(); final List collationList = new ArrayList<>(); gatherOrderExprs( bb, select, select.getOrderList(), orderExprList, collationList); final RelCollation collation = cluster.traitSet().canonize(RelCollations.of(collationList)); if (validator.isAggregate(select)) { convertAgg( bb, select, orderExprList); } else { convertSelectList( bb, select, orderExprList); } if (select.isDistinct()) { distinctify(bb, true); } convertOrder( select, bb, collation, orderExprList, select.getOffset(), select.getFetch()); bb.setRoot(bb.root, true); } /** * Having translated 'SELECT ... FROM ... [GROUP BY ...] [HAVING ...]', adds * a relational expression to make the results unique. * *

If the SELECT clause contains duplicate expressions, adds * {@link org.apache.calcite.rel.logical.LogicalProject}s so that we are * grouping on the minimal set of keys. The performance gain isn't huge, but * it is difficult to detect these duplicate expressions later. * * @param bb Blackboard * @param checkForDupExprs Check for duplicate expressions */ private void distinctify( Blackboard bb, boolean checkForDupExprs) { // Look for duplicate expressions in the project. // Say we have 'select x, y, x, z'. // Then dups will be {[2, 0]} // and oldToNew will be {[0, 0], [1, 1], [2, 0], [3, 2]} RelNode rel = bb.root; if (checkForDupExprs && (rel instanceof LogicalProject)) { LogicalProject project = (LogicalProject) rel; final List projectExprs = project.getProjects(); final List origins = new ArrayList<>(); int dupCount = 0; for (int i = 0; i < projectExprs.size(); i++) { int x = findExpr(projectExprs.get(i), projectExprs, i); if (x >= 0) { origins.add(x); ++dupCount; } else { origins.add(i); } } if (dupCount == 0) { distinctify(bb, false); return; } final Map squished = new HashMap<>(); final List fields = rel.getRowType().getFieldList(); final List> newProjects = new ArrayList<>(); for (int i = 0; i < fields.size(); i++) { if (origins.get(i) == i) { squished.put(i, newProjects.size()); newProjects.add(RexInputRef.of2(i, fields)); } } rel = LogicalProject.create(rel, Pair.left(newProjects), Pair.right(newProjects)); bb.root = rel; distinctify(bb, false); rel = bb.root; // Create the expressions to reverse the mapping. // Project($0, $1, $0, $2). final List> undoProjects = new ArrayList<>(); for (int i = 0; i < fields.size(); i++) { final int origin = origins.get(i); RelDataTypeField field = fields.get(i); undoProjects.add( Pair.of( (RexNode) new RexInputRef( squished.get(origin), field.getType()), field.getName())); } rel = LogicalProject.create(rel, Pair.left(undoProjects), Pair.right(undoProjects)); bb.setRoot( rel, false); return; } // Usual case: all of the expressions in the SELECT clause are // different. final ImmutableBitSet groupSet = ImmutableBitSet.range(rel.getRowType().getFieldCount()); rel = createAggregate(bb, groupSet, ImmutableList.of(groupSet), ImmutableList.of()); bb.setRoot( rel, false); } private int findExpr(RexNode seek, List exprs, int count) { for (int i = 0; i < count; i++) { RexNode expr = exprs.get(i); if (expr.toString().equals(seek.toString())) { return i; } } return -1; } /** * Converts a query's ORDER BY clause, if any. * * @param select Query * @param bb Blackboard * @param collation Collation list * @param orderExprList Method populates this list with orderBy expressions * not present in selectList * @param offset Expression for number of rows to discard before * returning first row * @param fetch Expression for number of rows to fetch */ protected void convertOrder( SqlSelect select, Blackboard bb, RelCollation collation, List orderExprList, SqlNode offset, SqlNode fetch) { if (select.getOrderList() == null || select.getOrderList().getList().isEmpty()) { assert collation.getFieldCollations().isEmpty(); if ((offset == null || (offset instanceof SqlLiteral && ((SqlLiteral) offset).bigDecimalValue().equals(BigDecimal.ZERO))) && fetch == null) { return; } } // Create a sorter using the previously constructed collations. bb.setRoot( LogicalSort.create(bb.root, collation, offset == null ? null : convertExpression(offset), fetch == null ? null : convertExpression(fetch)), false); // If extra expressions were added to the project list for sorting, // add another project to remove them. But make the collation empty, because // we can't represent the real collation. // // If it is the top node, use the real collation, but don't trim fields. if (orderExprList.size() > 0 && !bb.top) { final List exprs = new ArrayList<>(); final RelDataType rowType = bb.root.getRowType(); final int fieldCount = rowType.getFieldCount() - orderExprList.size(); for (int i = 0; i < fieldCount; i++) { exprs.add(rexBuilder.makeInputRef(bb.root, i)); } bb.setRoot( LogicalProject.create(bb.root, exprs, rowType.getFieldNames().subList(0, fieldCount)), false); } } /** * Returns whether a given node contains a {@link SqlInOperator}. * * @param node a RexNode tree */ private static boolean containsInOperator( SqlNode node) { try { SqlVisitor visitor = new SqlBasicVisitor() { public Void visit(SqlCall call) { if (call.getOperator() instanceof SqlInOperator) { throw new Util.FoundOne(call); } return super.visit(call); } }; node.accept(visitor); return false; } catch (Util.FoundOne e) { Util.swallow(e, null); return true; } } /** * Push down all the NOT logical operators into any IN/NOT IN operators. * * @param scope Scope where {@code sqlNode} occurs * @param sqlNode the root node from which to look for NOT operators * @return the transformed SqlNode representation with NOT pushed down. */ private static SqlNode pushDownNotForIn(SqlValidatorScope scope, SqlNode sqlNode) { if ((sqlNode instanceof SqlCall) && containsInOperator(sqlNode)) { SqlCall sqlCall = (SqlCall) sqlNode; if ((sqlCall.getOperator() == SqlStdOperatorTable.AND) || (sqlCall.getOperator() == SqlStdOperatorTable.OR)) { SqlNode[] sqlOperands = ((SqlBasicCall) sqlCall).operands; for (int i = 0; i < sqlOperands.length; i++) { sqlOperands[i] = pushDownNotForIn(scope, sqlOperands[i]); } return reg(scope, sqlNode); } else if (sqlCall.getOperator() == SqlStdOperatorTable.NOT) { SqlNode childNode = sqlCall.operand(0); assert childNode instanceof SqlCall; SqlBasicCall childSqlCall = (SqlBasicCall) childNode; if (childSqlCall.getOperator() == SqlStdOperatorTable.AND) { SqlNode[] andOperands = childSqlCall.getOperands(); SqlNode[] orOperands = new SqlNode[andOperands.length]; for (int i = 0; i < orOperands.length; i++) { orOperands[i] = reg(scope, SqlStdOperatorTable.NOT.createCall(SqlParserPos.ZERO, andOperands[i])); } for (int i = 0; i < orOperands.length; i++) { orOperands[i] = pushDownNotForIn(scope, orOperands[i]); } return reg(scope, SqlStdOperatorTable.OR.createCall(SqlParserPos.ZERO, orOperands[0], orOperands[1])); } else if (childSqlCall.getOperator() == SqlStdOperatorTable.OR) { SqlNode[] orOperands = childSqlCall.getOperands(); SqlNode[] andOperands = new SqlNode[orOperands.length]; for (int i = 0; i < andOperands.length; i++) { andOperands[i] = reg(scope, SqlStdOperatorTable.NOT.createCall(SqlParserPos.ZERO, orOperands[i])); } for (int i = 0; i < andOperands.length; i++) { andOperands[i] = pushDownNotForIn(scope, andOperands[i]); } return reg(scope, SqlStdOperatorTable.AND.createCall(SqlParserPos.ZERO, andOperands[0], andOperands[1])); } else if (childSqlCall.getOperator() == SqlStdOperatorTable.NOT) { SqlNode[] notOperands = childSqlCall.getOperands(); assert notOperands.length == 1; return pushDownNotForIn(scope, notOperands[0]); } else if (childSqlCall.getOperator() instanceof SqlInOperator) { SqlNode[] inOperands = childSqlCall.getOperands(); SqlInOperator inOp = (SqlInOperator) childSqlCall.getOperator(); if (inOp.kind == SqlKind.NOT_IN) { return reg(scope, SqlStdOperatorTable.IN.createCall(SqlParserPos.ZERO, inOperands[0], inOperands[1])); } else { return reg(scope, SqlStdOperatorTable.NOT_IN.createCall(SqlParserPos.ZERO, inOperands[0], inOperands[1])); } } else { // childSqlCall is "leaf" node in a logical expression tree // (only considering AND, OR, NOT) return sqlNode; } } else { // sqlNode is "leaf" node in a logical expression tree // (only considering AND, OR, NOT) return sqlNode; } } else { // tree rooted at sqlNode does not contain inOperator return sqlNode; } } /** Registers with the validator a {@link SqlNode} that has been created * during the Sql-to-Rel process. */ private static SqlNode reg(SqlValidatorScope scope, SqlNode e) { scope.getValidator().deriveType(scope, e); return e; } /** * Converts a WHERE clause. * * @param bb Blackboard * @param where WHERE clause, may be null */ private void convertWhere( final Blackboard bb, final SqlNode where) { if (where == null) { return; } SqlNode newWhere = pushDownNotForIn(bb.scope, where); replaceSubQueries(bb, newWhere, RelOptUtil.Logic.UNKNOWN_AS_FALSE); final RexNode convertedWhere = bb.convertExpression(newWhere); final RexNode convertedWhere2 = RexUtil.removeNullabilityCast(typeFactory, convertedWhere); // only allocate filter if the condition is not TRUE if (convertedWhere2.isAlwaysTrue()) { return; } final RelFactories.FilterFactory factory = RelFactories.DEFAULT_FILTER_FACTORY; final RelNode filter = factory.createFilter(bb.root, convertedWhere2); final RelNode r; final CorrelationUse p = getCorrelationUse(bb, filter); if (p != null) { assert p.r instanceof Filter; Filter f = (Filter) p.r; r = LogicalFilter.create(f.getInput(), f.getCondition(), ImmutableSet.of(p.id)); } else { r = filter; } bb.setRoot(r, false); } private void replaceSubQueries( final Blackboard bb, final SqlNode expr, RelOptUtil.Logic logic) { findSubQueries(bb, expr, logic, false); for (SubQuery node : bb.subQueryList) { substituteSubQuery(bb, node); } } private void substituteSubQuery(Blackboard bb, SubQuery subQuery) { final RexNode expr = subQuery.expr; if (expr != null) { // Already done. return; } final SqlBasicCall call; final RelNode rel; final SqlNode query; final RelOptUtil.Exists converted; switch (subQuery.node.getKind()) { case CURSOR: convertCursor(bb, subQuery); return; case MULTISET_QUERY_CONSTRUCTOR: case MULTISET_VALUE_CONSTRUCTOR: case ARRAY_QUERY_CONSTRUCTOR: rel = convertMultisets(ImmutableList.of(subQuery.node), bb); subQuery.expr = bb.register(rel, JoinRelType.INNER); return; case IN: case NOT_IN: case SOME: case ALL: call = (SqlBasicCall) subQuery.node; query = call.operand(1); if (!config.isExpand() && !(query instanceof SqlNodeList)) { return; } final SqlNode leftKeyNode = call.operand(0); final List leftKeys; switch (leftKeyNode.getKind()) { case ROW: leftKeys = new ArrayList<>(); for (SqlNode sqlExpr : ((SqlBasicCall) leftKeyNode).getOperandList()) { leftKeys.add(bb.convertExpression(sqlExpr)); } break; default: leftKeys = ImmutableList.of(bb.convertExpression(leftKeyNode)); } if (query instanceof SqlNodeList) { SqlNodeList valueList = (SqlNodeList) query; if (!containsNullLiteral(valueList) && valueList.size() < config.getInSubQueryThreshold()) { // We're under the threshold, so convert to OR. subQuery.expr = convertInToOr( bb, leftKeys, valueList, (SqlInOperator) call.getOperator()); return; } // Otherwise, let convertExists translate // values list into an inline table for the // reference to Q below. } // Project out the search columns from the left side // Q1: // "select from emp where emp.deptno in (select col1 from T)" // // is converted to // // "select from // emp inner join (select distinct col1 from T)) q // on emp.deptno = q.col1 // // Q2: // "select from emp where emp.deptno not in (Q)" // // is converted to // // "select from // emp left outer join (select distinct col1, TRUE from T) q // on emp.deptno = q.col1 // where emp.deptno <> null // and q.indicator <> TRUE" // final RelDataType targetRowType = SqlTypeUtil.promoteToRowType(typeFactory, validator.getValidatedNodeType(leftKeyNode), null); final boolean notIn = call.getOperator().kind == SqlKind.NOT_IN; converted = convertExists(query, RelOptUtil.SubQueryType.IN, subQuery.logic, notIn, targetRowType); if (converted.indicator) { // Generate // emp CROSS JOIN (SELECT COUNT(*) AS c, // COUNT(deptno) AS ck FROM dept) final RelDataType longType = typeFactory.createSqlType(SqlTypeName.BIGINT); final RelNode seek = converted.r.getInput(0); // fragile final int keyCount = leftKeys.size(); final List args = ImmutableIntList.range(0, keyCount); LogicalAggregate aggregate = LogicalAggregate.create(seek, ImmutableBitSet.of(), null, ImmutableList.of( AggregateCall.create(SqlStdOperatorTable.COUNT, false, false, ImmutableList.of(), -1, longType, null), AggregateCall.create(SqlStdOperatorTable.COUNT, false, false, args, -1, longType, null))); LogicalJoin join = LogicalJoin.create(bb.root, aggregate, rexBuilder.makeLiteral(true), ImmutableSet.of(), JoinRelType.INNER); bb.setRoot(join, false); } final RexNode rex = bb.register(converted.r, converted.outerJoin ? JoinRelType.LEFT : JoinRelType.INNER, leftKeys); RelOptUtil.Logic logic = subQuery.logic; switch (logic) { case TRUE_FALSE_UNKNOWN: case UNKNOWN_AS_TRUE: if (!converted.indicator) { logic = RelOptUtil.Logic.TRUE_FALSE; } } subQuery.expr = translateIn(logic, bb.root, rex); if (notIn) { subQuery.expr = rexBuilder.makeCall(SqlStdOperatorTable.NOT, subQuery.expr); } return; case EXISTS: // "select from emp where exists (select a from T)" // // is converted to the following if the sub-query is correlated: // // "select from emp left outer join (select AGG_TRUE() as indicator // from T group by corr_var) q where q.indicator is true" // // If there is no correlation, the expression is replaced with a // boolean indicating whether the sub-query returned 0 or >= 1 row. call = (SqlBasicCall) subQuery.node; query = call.operand(0); if (!config.isExpand()) { return; } converted = convertExists(query, RelOptUtil.SubQueryType.EXISTS, subQuery.logic, true, null); assert !converted.indicator; if (convertNonCorrelatedSubQuery(subQuery, bb, converted.r, true)) { return; } subQuery.expr = bb.register(converted.r, JoinRelType.LEFT); return; case SCALAR_QUERY: // Convert the sub-query. If it's non-correlated, convert it // to a constant expression. if (!config.isExpand()) { return; } call = (SqlBasicCall) subQuery.node; query = call.operand(0); converted = convertExists(query, RelOptUtil.SubQueryType.SCALAR, subQuery.logic, true, null); assert !converted.indicator; if (convertNonCorrelatedSubQuery(subQuery, bb, converted.r, false)) { return; } rel = convertToSingleValueSubq(query, converted.r); subQuery.expr = bb.register(rel, JoinRelType.LEFT); return; case SELECT: // This is used when converting multiset queries: // // select * from unnest(select multiset[deptno] from emps); // converted = convertExists(subQuery.node, RelOptUtil.SubQueryType.SCALAR, subQuery.logic, true, null); assert !converted.indicator; subQuery.expr = bb.register(converted.r, JoinRelType.LEFT); return; default: throw new AssertionError("unexpected kind of sub-query: " + subQuery.node); } } private RexNode translateIn(RelOptUtil.Logic logic, RelNode root, final RexNode rex) { switch (logic) { case TRUE: return rexBuilder.makeLiteral(true); case TRUE_FALSE: case UNKNOWN_AS_FALSE: assert rex instanceof RexRangeRef; final int fieldCount = rex.getType().getFieldCount(); RexNode rexNode = rexBuilder.makeFieldAccess(rex, fieldCount - 1); rexNode = rexBuilder.makeCall(SqlStdOperatorTable.IS_TRUE, rexNode); // Then append the IS NOT NULL(leftKeysForIn). // // RexRangeRef contains the following fields: // leftKeysForIn, // rightKeysForIn (the original sub-query select list), // nullIndicator // // The first two lists contain the same number of fields. final int k = (fieldCount - 1) / 2; for (int i = 0; i < k; i++) { rexNode = rexBuilder.makeCall( SqlStdOperatorTable.AND, rexNode, rexBuilder.makeCall( SqlStdOperatorTable.IS_NOT_NULL, rexBuilder.makeFieldAccess(rex, i))); } return rexNode; case TRUE_FALSE_UNKNOWN: case UNKNOWN_AS_TRUE: // select e.deptno, // case // when ct.c = 0 then false // when dt.i is not null then true // when e.deptno is null then null // when ct.ck < ct.c then null // else false // end // from e // cross join (select count(*) as c, count(deptno) as ck from v) as ct // left join (select distinct deptno, true as i from v) as dt // on e.deptno = dt.deptno final Join join = (Join) root; final Project left = (Project) join.getLeft(); final RelNode leftLeft = ((Join) left.getInput()).getLeft(); final int leftLeftCount = leftLeft.getRowType().getFieldCount(); final RelDataType longType = typeFactory.createSqlType(SqlTypeName.BIGINT); final RexNode cRef = rexBuilder.makeInputRef(root, leftLeftCount); final RexNode ckRef = rexBuilder.makeInputRef(root, leftLeftCount + 1); final RexNode iRef = rexBuilder.makeInputRef(root, root.getRowType().getFieldCount() - 1); final RexLiteral zero = rexBuilder.makeExactLiteral(BigDecimal.ZERO, longType); final RexLiteral trueLiteral = rexBuilder.makeLiteral(true); final RexLiteral falseLiteral = rexBuilder.makeLiteral(false); final RexNode unknownLiteral = rexBuilder.makeNullLiteral(trueLiteral.getType()); final ImmutableList.Builder args = ImmutableList.builder(); args.add(rexBuilder.makeCall(SqlStdOperatorTable.EQUALS, cRef, zero), falseLiteral, rexBuilder.makeCall(SqlStdOperatorTable.IS_NOT_NULL, iRef), trueLiteral); final JoinInfo joinInfo = join.analyzeCondition(); for (int leftKey : joinInfo.leftKeys) { final RexNode kRef = rexBuilder.makeInputRef(root, leftKey); args.add(rexBuilder.makeCall(SqlStdOperatorTable.IS_NULL, kRef), unknownLiteral); } args.add(rexBuilder.makeCall(SqlStdOperatorTable.LESS_THAN, ckRef, cRef), unknownLiteral, falseLiteral); return rexBuilder.makeCall(SqlStdOperatorTable.CASE, args.build()); default: throw new AssertionError(logic); } } private static boolean containsNullLiteral(SqlNodeList valueList) { for (SqlNode node : valueList.getList()) { if (node instanceof SqlLiteral) { SqlLiteral lit = (SqlLiteral) node; if (lit.getValue() == null) { return true; } } } return false; } /** * Determines if a sub-query is non-correlated and if so, converts it to a * constant. * * @param subQuery the call that references the sub-query * @param bb blackboard used to convert the sub-query * @param converted RelNode tree corresponding to the sub-query * @param isExists true if the sub-query is part of an EXISTS expression * @return Whether the sub-query can be converted to a constant */ private boolean convertNonCorrelatedSubQuery( SubQuery subQuery, Blackboard bb, RelNode converted, boolean isExists) { SqlCall call = (SqlBasicCall) subQuery.node; if (subQueryConverter.canConvertSubQuery() && isSubQueryNonCorrelated(converted, bb)) { // First check if the sub-query has already been converted // because it's a nested sub-query. If so, don't re-evaluate // it again. RexNode constExpr = mapConvertedNonCorrSubqs.get(call); if (constExpr == null) { constExpr = subQueryConverter.convertSubQuery( call, this, isExists, config.isExplain()); } if (constExpr != null) { subQuery.expr = constExpr; mapConvertedNonCorrSubqs.put(call, constExpr); return true; } } return false; } /** * Converts the RelNode tree for a select statement to a select that * produces a single value. * * @param query the query * @param plan the original RelNode tree corresponding to the statement * @return the converted RelNode tree */ public RelNode convertToSingleValueSubq( SqlNode query, RelNode plan) { // Check whether query is guaranteed to produce a single value. if (query instanceof SqlSelect) { SqlSelect select = (SqlSelect) query; SqlNodeList selectList = select.getSelectList(); SqlNodeList groupList = select.getGroup(); if ((selectList.size() == 1) && ((groupList == null) || (groupList.size() == 0))) { SqlNode selectExpr = selectList.get(0); if (selectExpr instanceof SqlCall) { SqlCall selectExprCall = (SqlCall) selectExpr; if (Util.isSingleValue(selectExprCall)) { return plan; } } // If there is a limit with 0 or 1, // it is ensured to produce a single value if (select.getFetch() != null && select.getFetch() instanceof SqlNumericLiteral) { SqlNumericLiteral limitNum = (SqlNumericLiteral) select.getFetch(); if (((BigDecimal) limitNum.getValue()).intValue() < 2) { return plan; } } } } else if (query instanceof SqlCall) { // If the query is (values ...), // it is necessary to look into the operands to determine // whether SingleValueAgg is necessary SqlCall exprCall = (SqlCall) query; if (exprCall.getOperator() instanceof SqlValuesOperator && Util.isSingleValue(exprCall)) { return plan; } } // If not, project SingleValueAgg return RelOptUtil.createSingleValueAggRel( cluster, plan); } /** * Converts "x IN (1, 2, ...)" to "x=1 OR x=2 OR ...". * * @param leftKeys LHS * @param valuesList RHS * @param op The operator (IN, NOT IN, > SOME, ...) * @return converted expression */ private RexNode convertInToOr( final Blackboard bb, final List leftKeys, SqlNodeList valuesList, SqlInOperator op) { final List comparisons = new ArrayList<>(); for (SqlNode rightVals : valuesList) { RexNode rexComparison; final SqlOperator comparisonOp; if (op instanceof SqlQuantifyOperator) { comparisonOp = RelOptUtil.op(((SqlQuantifyOperator) op).comparisonKind, SqlStdOperatorTable.EQUALS); } else { comparisonOp = SqlStdOperatorTable.EQUALS; } if (leftKeys.size() == 1) { rexComparison = rexBuilder.makeCall(comparisonOp, leftKeys.get(0), ensureSqlType(leftKeys.get(0).getType(), bb.convertExpression(rightVals))); } else { assert rightVals instanceof SqlCall; final SqlBasicCall call = (SqlBasicCall) rightVals; assert (call.getOperator() instanceof SqlRowOperator) && call.operandCount() == leftKeys.size(); rexComparison = RexUtil.composeConjunction( rexBuilder, Iterables.transform( Pair.zip(leftKeys, call.getOperandList()), pair -> rexBuilder.makeCall(comparisonOp, pair.left, ensureSqlType(pair.left.getType(), bb.convertExpression(pair.right)))), false); } comparisons.add(rexComparison); } switch (op.kind) { case ALL: return RexUtil.composeConjunction(rexBuilder, comparisons, true); case NOT_IN: return rexBuilder.makeCall(SqlStdOperatorTable.NOT, RexUtil.composeDisjunction(rexBuilder, comparisons, true)); case IN: case SOME: return RexUtil.composeDisjunction(rexBuilder, comparisons, true); default: throw new AssertionError(); } } /** Ensures that an expression has a given {@link SqlTypeName}, applying a * cast if necessary. If the expression already has the right type family, * returns the expression unchanged. */ private RexNode ensureSqlType(RelDataType type, RexNode node) { if (type.getSqlTypeName() == node.getType().getSqlTypeName() || (type.getSqlTypeName() == SqlTypeName.VARCHAR && node.getType().getSqlTypeName() == SqlTypeName.CHAR)) { return node; } return rexBuilder.ensureType(type, node, true); } /** * Gets the list size threshold under which {@link #convertInToOr} is used. * Lists of this size or greater will instead be converted to use a join * against an inline table * ({@link org.apache.calcite.rel.logical.LogicalValues}) rather than a * predicate. A threshold of 0 forces usage of an inline table in all cases; a * threshold of Integer.MAX_VALUE forces usage of OR in all cases * * @return threshold, default {@link #DEFAULT_IN_SUB_QUERY_THRESHOLD} */ @Deprecated // to be removed before 2.0 protected int getInSubqueryThreshold() { return config.getInSubQueryThreshold(); } /** * Converts an EXISTS or IN predicate into a join. For EXISTS, the sub-query * produces an indicator variable, and the result is a relational expression * which outer joins that indicator to the original query. After performing * the outer join, the condition will be TRUE if the EXISTS condition holds, * NULL otherwise. * * @param seek A query, for example 'select * from emp' or * 'values (1,2,3)' or '('Foo', 34)'. * @param subQueryType Whether sub-query is IN, EXISTS or scalar * @param logic Whether the answer needs to be in full 3-valued logic (TRUE, * FALSE, UNKNOWN) will be required, or whether we can accept an * approximation (say representing UNKNOWN as FALSE) * @param notIn Whether the operation is NOT IN * @return join expression */ private RelOptUtil.Exists convertExists( SqlNode seek, RelOptUtil.SubQueryType subQueryType, RelOptUtil.Logic logic, boolean notIn, RelDataType targetDataType) { final SqlValidatorScope seekScope = (seek instanceof SqlSelect) ? validator.getSelectScope((SqlSelect) seek) : null; final Blackboard seekBb = createBlackboard(seekScope, null, false); RelNode seekRel = convertQueryOrInList(seekBb, seek, targetDataType); return RelOptUtil.createExistsPlan(seekRel, subQueryType, logic, notIn, relBuilder); } private RelNode convertQueryOrInList( Blackboard bb, SqlNode seek, RelDataType targetRowType) { // NOTE: Once we start accepting single-row queries as row constructors, // there will be an ambiguity here for a case like X IN ((SELECT Y FROM // Z)). The SQL standard resolves the ambiguity by saying that a lone // select should be interpreted as a table expression, not a row // expression. The semantic difference is that a table expression can // return multiple rows. if (seek instanceof SqlNodeList) { return convertRowValues( bb, seek, ((SqlNodeList) seek).getList(), false, targetRowType); } else { return convertQueryRecursive(seek, false, null).project(); } } private RelNode convertRowValues( Blackboard bb, SqlNode rowList, Collection rows, boolean allowLiteralsOnly, RelDataType targetRowType) { // NOTE jvs 30-Apr-2006: We combine all rows consisting entirely of // literals into a single LogicalValues; this gives the optimizer a smaller // input tree. For everything else (computed expressions, row // sub-queries), we union each row in as a projection on top of a // LogicalOneRow. final ImmutableList.Builder> tupleList = ImmutableList.builder(); final RelDataType rowType; if (targetRowType != null) { rowType = targetRowType; } else { rowType = SqlTypeUtil.promoteToRowType( typeFactory, validator.getValidatedNodeType(rowList), null); } final List unionInputs = new ArrayList<>(); for (SqlNode node : rows) { SqlBasicCall call; if (isRowConstructor(node)) { call = (SqlBasicCall) node; ImmutableList.Builder tuple = ImmutableList.builder(); for (Ord operand : Ord.zip(call.operands)) { RexLiteral rexLiteral = convertLiteralInValuesList( operand.e, bb, rowType, operand.i); if ((rexLiteral == null) && allowLiteralsOnly) { return null; } if ((rexLiteral == null) || !config.isCreateValuesRel()) { // fallback to convertRowConstructor tuple = null; break; } tuple.add(rexLiteral); } if (tuple != null) { tupleList.add(tuple.build()); continue; } } else { RexLiteral rexLiteral = convertLiteralInValuesList( node, bb, rowType, 0); if ((rexLiteral != null) && config.isCreateValuesRel()) { tupleList.add(ImmutableList.of(rexLiteral)); continue; } else { if ((rexLiteral == null) && allowLiteralsOnly) { return null; } } // convert "1" to "row(1)" call = (SqlBasicCall) SqlStdOperatorTable.ROW.createCall( SqlParserPos.ZERO, node); } unionInputs.add(convertRowConstructor(bb, call)); } LogicalValues values = LogicalValues.create(cluster, rowType, tupleList.build()); RelNode resultRel; if (unionInputs.isEmpty()) { resultRel = values; } else { if (!values.getTuples().isEmpty()) { unionInputs.add(values); } resultRel = LogicalUnion.create(unionInputs, true); } leaves.add(resultRel); return resultRel; } private RexLiteral convertLiteralInValuesList( SqlNode sqlNode, Blackboard bb, RelDataType rowType, int iField) { if (!(sqlNode instanceof SqlLiteral)) { return null; } RelDataTypeField field = rowType.getFieldList().get(iField); RelDataType type = field.getType(); if (type.isStruct()) { // null literals for weird stuff like UDT's need // special handling during type flattening, so // don't use LogicalValues for those return null; } RexNode literalExpr = exprConverter.convertLiteral( bb, (SqlLiteral) sqlNode); if (!(literalExpr instanceof RexLiteral)) { assert literalExpr.isA(SqlKind.CAST); RexNode child = ((RexCall) literalExpr).getOperands().get(0); assert RexLiteral.isNullLiteral(child); // NOTE jvs 22-Nov-2006: we preserve type info // in LogicalValues digest, so it's OK to lose it here return (RexLiteral) child; } RexLiteral literal = (RexLiteral) literalExpr; Comparable value = literal.getValue(); if (SqlTypeUtil.isExactNumeric(type) && SqlTypeUtil.hasScale(type)) { BigDecimal roundedValue = NumberUtil.rescaleBigDecimal( (BigDecimal) value, type.getScale()); return rexBuilder.makeExactLiteral( roundedValue, type); } if ((value instanceof NlsString) && (type.getSqlTypeName() == SqlTypeName.CHAR)) { // pad fixed character type NlsString unpadded = (NlsString) value; return rexBuilder.makeCharLiteral( new NlsString( Spaces.padRight(unpadded.getValue(), type.getPrecision()), unpadded.getCharsetName(), unpadded.getCollation())); } return literal; } private boolean isRowConstructor(SqlNode node) { if (!(node.getKind() == SqlKind.ROW)) { return false; } SqlCall call = (SqlCall) node; return call.getOperator().getName().equalsIgnoreCase("row"); } /** * Builds a list of all IN or EXISTS operators * inside SQL parse tree. Does not traverse inside queries. * * @param bb blackboard * @param node the SQL parse tree * @param logic Whether the answer needs to be in full 3-valued logic (TRUE, * FALSE, UNKNOWN) will be required, or whether we can accept * an approximation (say representing UNKNOWN as FALSE) * @param registerOnlyScalarSubQueries if set to true and the parse tree * corresponds to a variation of a select * node, only register it if it's a scalar * sub-query */ private void findSubQueries( Blackboard bb, SqlNode node, RelOptUtil.Logic logic, boolean registerOnlyScalarSubQueries) { final SqlKind kind = node.getKind(); switch (kind) { case EXISTS: case SELECT: case MULTISET_QUERY_CONSTRUCTOR: case MULTISET_VALUE_CONSTRUCTOR: case ARRAY_QUERY_CONSTRUCTOR: case CURSOR: case SCALAR_QUERY: if (!registerOnlyScalarSubQueries || (kind == SqlKind.SCALAR_QUERY)) { bb.registerSubQuery(node, RelOptUtil.Logic.TRUE_FALSE); } return; case IN: break; case NOT_IN: case NOT: logic = logic.negate(); break; } if (node instanceof SqlCall) { switch (kind) { // Do no change logic for AND, IN and NOT IN expressions; // but do change logic for OR, NOT and others; // EXISTS was handled already. case AND: case IN: case NOT_IN: break; default: logic = RelOptUtil.Logic.TRUE_FALSE_UNKNOWN; break; } for (SqlNode operand : ((SqlCall) node).getOperandList()) { if (operand != null) { // In the case of an IN expression, locate scalar // sub-queries so we can convert them to constants findSubQueries(bb, operand, logic, kind == SqlKind.IN || kind == SqlKind.NOT_IN || kind == SqlKind.SOME || kind == SqlKind.ALL || registerOnlyScalarSubQueries); } } } else if (node instanceof SqlNodeList) { for (SqlNode child : (SqlNodeList) node) { findSubQueries(bb, child, logic, kind == SqlKind.IN || kind == SqlKind.NOT_IN || kind == SqlKind.SOME || kind == SqlKind.ALL || registerOnlyScalarSubQueries); } } // Now that we've located any scalar sub-queries inside the IN // expression, register the IN expression itself. We need to // register the scalar sub-queries first so they can be converted // before the IN expression is converted. switch (kind) { case IN: case NOT_IN: case SOME: case ALL: switch (logic) { case TRUE_FALSE_UNKNOWN: if (validator.getValidatedNodeType(node).isNullable()) { break; } else if (true) { break; } // fall through case UNKNOWN_AS_FALSE: logic = RelOptUtil.Logic.TRUE; } bb.registerSubQuery(node, logic); break; } } /** * Converts an expression from {@link SqlNode} to {@link RexNode} format. * * @param node Expression to translate * @return Converted expression */ public RexNode convertExpression( SqlNode node) { Map nameToTypeMap = Collections.emptyMap(); final ParameterScope scope = new ParameterScope((SqlValidatorImpl) validator, nameToTypeMap); final Blackboard bb = createBlackboard(scope, null, false); return bb.convertExpression(node); } /** * Converts an expression from {@link SqlNode} to {@link RexNode} format, * mapping identifier references to predefined expressions. * * @param node Expression to translate * @param nameToNodeMap map from String to {@link RexNode}; when an * {@link SqlIdentifier} is encountered, it is used as a * key and translated to the corresponding value from * this map * @return Converted expression */ public RexNode convertExpression( SqlNode node, Map nameToNodeMap) { final Map nameToTypeMap = new HashMap<>(); for (Map.Entry entry : nameToNodeMap.entrySet()) { nameToTypeMap.put(entry.getKey(), entry.getValue().getType()); } final ParameterScope scope = new ParameterScope((SqlValidatorImpl) validator, nameToTypeMap); final Blackboard bb = createBlackboard(scope, nameToNodeMap, false); return bb.convertExpression(node); } /** * Converts a non-standard expression. * *

This method is an extension-point that derived classes can override. If * this method returns a null result, the normal expression translation * process will proceed. The default implementation always returns null. * * @param node Expression * @param bb Blackboard * @return null to proceed with the usual expression translation process */ protected RexNode convertExtendedExpression( SqlNode node, Blackboard bb) { return null; } private RexNode convertOver(Blackboard bb, SqlNode node) { SqlCall call = (SqlCall) node; SqlCall aggCall = call.operand(0); SqlNode windowOrRef = call.operand(1); final SqlWindow window = validator.resolveWindow(windowOrRef, bb.scope, true); // ROW_NUMBER() expects specific kind of framing. if (aggCall.getKind() == SqlKind.ROW_NUMBER) { window.setLowerBound(SqlWindow.createUnboundedPreceding(SqlParserPos.ZERO)); window.setUpperBound(SqlWindow.createCurrentRow(SqlParserPos.ZERO)); window.setRows(SqlLiteral.createBoolean(true, SqlParserPos.ZERO)); } final SqlNodeList partitionList = window.getPartitionList(); final ImmutableList.Builder partitionKeys = ImmutableList.builder(); for (SqlNode partition : partitionList) { partitionKeys.add(bb.convertExpression(partition)); } RexNode lowerBound = bb.convertExpression(window.getLowerBound()); RexNode upperBound = bb.convertExpression(window.getUpperBound()); SqlNodeList orderList = window.getOrderList(); if ((orderList.size() == 0) && !window.isRows()) { // A logical range requires an ORDER BY clause. Use the implicit // ordering of this relation. There must be one, otherwise it would // have failed validation. orderList = bb.scope.getOrderList(); if (orderList == null) { throw new AssertionError( "Relation should have sort key for implicit ORDER BY"); } } final ImmutableList.Builder orderKeys = ImmutableList.builder(); for (SqlNode order : orderList) { orderKeys.add( bb.convertSortExpression(order, RelFieldCollation.Direction.ASCENDING, RelFieldCollation.NullDirection.UNSPECIFIED)); } try { Preconditions.checkArgument(bb.window == null, "already in window agg mode"); bb.window = window; RexNode rexAgg = exprConverter.convertCall(bb, aggCall); rexAgg = rexBuilder.ensureType( validator.getValidatedNodeType(call), rexAgg, false); // Walk over the tree and apply 'over' to all agg functions. This is // necessary because the returned expression is not necessarily a call // to an agg function. For example, AVG(x) becomes SUM(x) / COUNT(x). final SqlLiteral q = aggCall.getFunctionQuantifier(); final boolean isDistinct = q != null && q.getValue() == SqlSelectKeyword.DISTINCT; final RexShuttle visitor = new HistogramShuttle( partitionKeys.build(), orderKeys.build(), RexWindowBound.create(window.getLowerBound(), lowerBound), RexWindowBound.create(window.getUpperBound(), upperBound), window, isDistinct); RexNode overNode = rexAgg.accept(visitor); return overNode; } finally { bb.window = null; } } /** * Converts a FROM clause into a relational expression. * * @param bb Scope within which to resolve identifiers * @param from FROM clause of a query. Examples include: * *

    *
  • a single table ("SALES.EMP"), *
  • an aliased table ("EMP AS E"), *
  • a list of tables ("EMP, DEPT"), *
  • an ANSI Join expression ("EMP JOIN DEPT ON EMP.DEPTNO = * DEPT.DEPTNO"), *
  • a VALUES clause ("VALUES ('Fred', 20)"), *
  • a query ("(SELECT * FROM EMP WHERE GENDER = 'F')"), *
  • or any combination of the above. *
*/ protected void convertFrom( Blackboard bb, SqlNode from) { if (from == null) { bb.setRoot(LogicalValues.createOneRow(cluster), false); return; } final SqlCall call; final SqlNode[] operands; switch (from.getKind()) { case MATCH_RECOGNIZE: convertMatchRecognize(bb, (SqlCall) from); return; case AS: call = (SqlCall) from; convertFrom(bb, call.operand(0)); if (call.operandCount() > 2 && (bb.root instanceof Values || bb.root instanceof Uncollect)) { final List fieldNames = new ArrayList<>(); for (SqlNode node : Util.skip(call.getOperandList(), 2)) { fieldNames.add(((SqlIdentifier) node).getSimple()); } bb.setRoot(relBuilder.push(bb.root).rename(fieldNames).build(), true); } return; case WITH_ITEM: convertFrom(bb, ((SqlWithItem) from).query); return; case WITH: convertFrom(bb, ((SqlWith) from).body); return; case TABLESAMPLE: operands = ((SqlBasicCall) from).getOperands(); SqlSampleSpec sampleSpec = SqlLiteral.sampleValue(operands[1]); if (sampleSpec instanceof SqlSampleSpec.SqlSubstitutionSampleSpec) { String sampleName = ((SqlSampleSpec.SqlSubstitutionSampleSpec) sampleSpec) .getName(); datasetStack.push(sampleName); convertFrom(bb, operands[0]); datasetStack.pop(); } else if (sampleSpec instanceof SqlSampleSpec.SqlTableSampleSpec) { SqlSampleSpec.SqlTableSampleSpec tableSampleSpec = (SqlSampleSpec.SqlTableSampleSpec) sampleSpec; convertFrom(bb, operands[0]); RelOptSamplingParameters params = new RelOptSamplingParameters( tableSampleSpec.isBernoulli(), tableSampleSpec.getSamplePercentage(), tableSampleSpec.isRepeatable(), tableSampleSpec.getRepeatableSeed()); bb.setRoot(new Sample(cluster, bb.root, params), false); } else { throw new AssertionError("unknown TABLESAMPLE type: " + sampleSpec); } return; case IDENTIFIER: convertIdentifier(bb, (SqlIdentifier) from, null); return; case EXTEND: call = (SqlCall) from; SqlIdentifier id = (SqlIdentifier) call.getOperandList().get(0); SqlNodeList extendedColumns = (SqlNodeList) call.getOperandList().get(1); convertIdentifier(bb, id, extendedColumns); return; case SNAPSHOT: snapshotTemporalTable(bb, (SqlCall) from); return; case CONFIGURABLE: call = (SqlCall) from; SqlIdentifier tableId = (SqlIdentifier) call.getOperandList().get(0); SqlNodeList param = (SqlNodeList) call.getOperandList().get(1); convertIdentifierWitTableHints(bb, tableId, param); return; case JOIN: final SqlJoin join = (SqlJoin) from; final SqlValidatorScope scope = validator.getJoinScope(from); final Blackboard fromBlackboard = createBlackboard(scope, null, false); SqlNode left = join.getLeft(); SqlNode right = join.getRight(); final boolean isNatural = join.isNatural(); final JoinType joinType = join.getJoinType(); final SqlValidatorScope leftScope = Util.first(validator.getJoinScope(left), ((DelegatingScope) bb.scope).getParent()); final Blackboard leftBlackboard = createBlackboard(leftScope, null, false); final SqlValidatorScope rightScope = Util.first(validator.getJoinScope(right), ((DelegatingScope) bb.scope).getParent()); final Blackboard rightBlackboard = createBlackboard(rightScope, null, false); convertFrom(leftBlackboard, left); RelNode leftRel = leftBlackboard.root; convertFrom(rightBlackboard, right); RelNode rightRel = rightBlackboard.root; JoinRelType convertedJoinType = convertJoinType(joinType); RexNode conditionExp; final SqlValidatorNamespace leftNamespace = validator.getNamespace(left); final SqlValidatorNamespace rightNamespace = validator.getNamespace(right); if (isNatural) { final RelDataType leftRowType = leftNamespace.getRowType(); final RelDataType rightRowType = rightNamespace.getRowType(); final List columnList = SqlValidatorUtil.deriveNaturalJoinColumnList( catalogReader.nameMatcher(), leftRowType, rightRowType); conditionExp = convertUsing(leftNamespace, rightNamespace, columnList); } else { conditionExp = convertJoinCondition( fromBlackboard, leftNamespace, rightNamespace, join.getCondition(), join.getConditionType(), leftRel, rightRel); } final RelNode joinRel = createJoin( fromBlackboard, leftRel, rightRel, conditionExp, convertedJoinType); bb.setRoot(joinRel, false); return; case SELECT: case INTERSECT: case EXCEPT: case UNION: final RelNode rel = convertQueryRecursive(from, false, null).project(); bb.setRoot(rel, true); return; case VALUES: convertValuesImpl(bb, (SqlCall) from, null); return; case UNNEST: call = (SqlCall) from; final List nodes = call.getOperandList(); final SqlUnnestOperator operator = (SqlUnnestOperator) call.getOperator(); for (SqlNode node : nodes) { replaceSubQueries(bb, node, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); } final List exprs = new ArrayList<>(); final List fieldNames = new ArrayList<>(); for (Ord node : Ord.zip(nodes)) { exprs.add(bb.convertExpression(node.e)); fieldNames.add(validator.deriveAlias(node.e, node.i)); } RelNode child = (null != bb.root) ? bb.root : LogicalValues.createOneRow(cluster); relBuilder.push(child).projectNamed(exprs, fieldNames, false); Uncollect uncollect = new Uncollect(cluster, cluster.traitSetOf(Convention.NONE), relBuilder.build(), operator.withOrdinality); bb.setRoot(uncollect, true); return; case COLLECTION_TABLE: call = (SqlCall) from; // Dig out real call; TABLE() wrapper is just syntactic. assert call.getOperandList().size() == 1; final SqlCall call2 = call.operand(0); convertCollectionTable(bb, call2); return; default: throw new AssertionError("not a join operator " + from); } } protected void convertMatchRecognize(Blackboard bb, SqlCall call) { final SqlMatchRecognize matchRecognize = (SqlMatchRecognize) call; final SqlValidatorNamespace ns = validator.getNamespace(matchRecognize); final SqlValidatorScope scope = validator.getMatchRecognizeScope(matchRecognize); final Blackboard matchBb = createBlackboard(scope, null, false); final RelDataType rowType = ns.getRowType(); // convert inner query, could be a table name or a derived table SqlNode expr = matchRecognize.getTableRef(); convertFrom(matchBb, expr); final RelNode input = matchBb.root; // PARTITION BY final SqlNodeList partitionList = matchRecognize.getPartitionList(); final List partitionKeys = new ArrayList<>(); for (SqlNode partition : partitionList) { RexNode e = matchBb.convertExpression(partition); partitionKeys.add(e); } // ORDER BY final SqlNodeList orderList = matchRecognize.getOrderList(); final List orderKeys = new ArrayList<>(); for (SqlNode order : orderList) { final RelFieldCollation.Direction direction; switch (order.getKind()) { case DESCENDING: direction = RelFieldCollation.Direction.DESCENDING; order = ((SqlCall) order).operand(0); break; case NULLS_FIRST: case NULLS_LAST: throw new AssertionError(); default: direction = RelFieldCollation.Direction.ASCENDING; break; } final RelFieldCollation.NullDirection nullDirection = validator.getDefaultNullCollation().last(desc(direction)) ? RelFieldCollation.NullDirection.LAST : RelFieldCollation.NullDirection.FIRST; RexNode e = matchBb.convertExpression(order); orderKeys.add( new RelFieldCollation(((RexInputRef) e).getIndex(), direction, nullDirection)); } final RelCollation orders = cluster.traitSet().canonize(RelCollations.of(orderKeys)); // convert pattern final Set patternVarsSet = new HashSet<>(); SqlNode pattern = matchRecognize.getPattern(); final SqlBasicVisitor patternVarVisitor = new SqlBasicVisitor() { @Override public RexNode visit(SqlCall call) { List operands = call.getOperandList(); List newOperands = new ArrayList<>(); for (SqlNode node : operands) { newOperands.add(node.accept(this)); } return rexBuilder.makeCall( validator.getUnknownType(), call.getOperator(), newOperands); } @Override public RexNode visit(SqlIdentifier id) { assert id.isSimple(); patternVarsSet.add(id.getSimple()); return rexBuilder.makeLiteral(id.getSimple()); } @Override public RexNode visit(SqlLiteral literal) { if (literal instanceof SqlNumericLiteral) { return rexBuilder.makeExactLiteral(BigDecimal.valueOf(literal.intValue(true))); } else { return rexBuilder.makeLiteral(literal.booleanValue()); } } }; final RexNode patternNode = pattern.accept(patternVarVisitor); SqlLiteral interval = matchRecognize.getInterval(); RexNode intervalNode = null; if (interval != null) { intervalNode = matchBb.convertLiteral(interval); } // convert subset final SqlNodeList subsets = matchRecognize.getSubsetList(); final Map> subsetMap = new HashMap<>(); for (SqlNode node : subsets) { List operands = ((SqlCall) node).getOperandList(); SqlIdentifier left = (SqlIdentifier) operands.get(0); patternVarsSet.add(left.getSimple()); SqlNodeList rights = (SqlNodeList) operands.get(1); final TreeSet list = new TreeSet(); for (SqlNode right : rights) { assert right instanceof SqlIdentifier; list.add(((SqlIdentifier) right).getSimple()); } subsetMap.put(left.getSimple(), list); } SqlNode afterMatch = matchRecognize.getAfter(); if (afterMatch == null) { afterMatch = SqlMatchRecognize.AfterOption.SKIP_TO_NEXT_ROW.symbol(SqlParserPos.ZERO); } final RexNode after; if (afterMatch instanceof SqlCall) { List operands = ((SqlCall) afterMatch).getOperandList(); SqlOperator operator = ((SqlCall) afterMatch).getOperator(); assert operands.size() == 1; SqlIdentifier id = (SqlIdentifier) operands.get(0); assert patternVarsSet.contains(id.getSimple()) : id.getSimple() + " not defined in pattern"; RexNode rex = rexBuilder.makeLiteral(id.getSimple()); after = rexBuilder.makeCall(validator.getUnknownType(), operator, ImmutableList.of(rex)); } else { after = matchBb.convertExpression(afterMatch); } matchBb.setPatternVarRef(true); // convert measures final ImmutableMap.Builder measureNodes = ImmutableMap.builder(); for (SqlNode measure : matchRecognize.getMeasureList()) { List operands = ((SqlCall) measure).getOperandList(); String alias = ((SqlIdentifier) operands.get(1)).getSimple(); RexNode rex = matchBb.convertExpression(operands.get(0)); measureNodes.put(alias, rex); } // convert definitions final ImmutableMap.Builder definitionNodes = ImmutableMap.builder(); for (SqlNode def : matchRecognize.getPatternDefList()) { replaceSubQueries(matchBb, def, RelOptUtil.Logic.UNKNOWN_AS_FALSE); List operands = ((SqlCall) def).getOperandList(); String alias = ((SqlIdentifier) operands.get(1)).getSimple(); RexNode rex = matchBb.convertExpression(operands.get(0)); definitionNodes.put(alias, rex); } RexNode rowsPerMatchNode = null; final SqlLiteral rowsPerMatch = matchRecognize.getRowsPerMatch(); if (rowsPerMatch != null) { rowsPerMatchNode = matchBb.convertLiteral(rowsPerMatch); } matchBb.setPatternVarRef(false); final RelFactories.MatchFactory factory = RelFactories.DEFAULT_MATCH_FACTORY; final RelNode rel = factory.createMatch(input, patternNode, rowType, matchRecognize.getStrictStart().booleanValue(), matchRecognize.getStrictEnd().booleanValue(), definitionNodes.build(), measureNodes.build(), after, subsetMap, rowsPerMatchNode, partitionKeys, orders, intervalNode); bb.setRoot(rel, false); } private void convertIdentifierWitTableHints(Blackboard bb, SqlIdentifier id, SqlNodeList param) { final SqlValidatorNamespace fromNamespace = validator.getNamespace(id).resolve(); if (fromNamespace.getNode() != null) { convertFrom(bb, fromNamespace.getNode()); return; } final String datasetName = datasetStack.isEmpty() ? null : datasetStack.peek(); final boolean[] usedDataset = {false}; RelOptTable table = SqlValidatorUtil.getRelOptTable(fromNamespace, catalogReader, datasetName, usedDataset); if (param != null && param.size() > 0) { assert table != null; Map paramMap = new HashMap<>(); for (SqlNode node : param.getList()) { SqlProperty property = (SqlProperty) node; paramMap.put(property.getKeyString(), property.getValueString()); } table = table.config(paramMap); } final RelNode tableRel; if (config.isConvertTableAccess()) { tableRel = toRel(table); } else { tableRel = LogicalTableScan.create(cluster, table); } bb.setRoot(tableRel, true); if (usedDataset[0]) { bb.setDataset(datasetName); } } private void convertIdentifier(Blackboard bb, SqlIdentifier id, SqlNodeList extendedColumns) { final SqlValidatorNamespace fromNamespace = validator.getNamespace(id).resolve(); if (fromNamespace.getNode() != null) { convertFrom(bb, fromNamespace.getNode()); return; } final String datasetName = datasetStack.isEmpty() ? null : datasetStack.peek(); final boolean[] usedDataset = {false}; RelOptTable table = SqlValidatorUtil.getRelOptTable(fromNamespace, catalogReader, datasetName, usedDataset); if (extendedColumns != null && extendedColumns.size() > 0) { assert table != null; final SqlValidatorTable validatorTable = table.unwrap(SqlValidatorTable.class); final List extendedFields = SqlValidatorUtil.getExtendedColumns(validator.getTypeFactory(), validatorTable, extendedColumns); table = table.extend(extendedFields); } final RelNode tableRel; if (config.isConvertTableAccess()) { tableRel = toRel(table); } else { tableRel = LogicalTableScan.create(cluster, table); } bb.setRoot(tableRel, true); if (usedDataset[0]) { bb.setDataset(datasetName); } } protected void convertCollectionTable( Blackboard bb, SqlCall call) { final SqlOperator operator = call.getOperator(); if (operator == SqlStdOperatorTable.TABLESAMPLE) { final String sampleName = SqlLiteral.unchain(call.operand(0)).getValueAs(String.class); datasetStack.push(sampleName); SqlCall cursorCall = call.operand(1); SqlNode query = cursorCall.operand(0); RelNode converted = convertQuery(query, false, false).rel; bb.setRoot(converted, false); datasetStack.pop(); return; } replaceSubQueries(bb, call, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); // Expand table macro if possible. It's more efficient than // LogicalTableFunctionScan. final SqlCallBinding callBinding = new SqlCallBinding(bb.scope.getValidator(), bb.scope, call); if (operator instanceof SqlUserDefinedTableMacro) { final SqlUserDefinedTableMacro udf = (SqlUserDefinedTableMacro) operator; final TranslatableTable table = udf.getTable(typeFactory, callBinding.operands()); final RelDataType rowType = table.getRowType(typeFactory); RelOptTable relOptTable = RelOptTableImpl.create(null, rowType, table, udf.getNameAsId().names); RelNode converted = toRel(relOptTable); bb.setRoot(converted, true); return; } Type elementType; if (operator instanceof SqlUserDefinedTableFunction) { SqlUserDefinedTableFunction udtf = (SqlUserDefinedTableFunction) operator; elementType = udtf.getElementType(typeFactory, callBinding.operands()); } else { elementType = null; } RexNode rexCall = bb.convertExpression(call); final List inputs = bb.retrieveCursors(); Set columnMappings = getColumnMappings(operator); LogicalTableFunctionScan callRel = LogicalTableFunctionScan.create( cluster, inputs, rexCall, elementType, validator.getValidatedNodeType(call), columnMappings); bb.setRoot(callRel, true); afterTableFunction(bb, call, callRel); } protected void afterTableFunction( SqlToRelConverter.Blackboard bb, SqlCall call, LogicalTableFunctionScan callRel) { } private void snapshotTemporalTable(Blackboard bb, SqlCall call) { final SqlSnapshot snapshot = (SqlSnapshot) call; RexNode rexCall = bb.convertExpression(snapshot.getPeriod()); // convert inner query, could be a table name or a derived table SqlNode expr = snapshot.getTableRef(); convertFrom(bb, expr); final TableScan scan = (TableScan) bb.root; LogicalSnapshot snapshotRel = LogicalSnapshot.create(scan, rexCall); bb.setRoot(snapshotRel, false); } private Set getColumnMappings(SqlOperator op) { SqlReturnTypeInference rti = op.getReturnTypeInference(); if (rti == null) { return null; } if (rti instanceof TableFunctionReturnTypeInference) { TableFunctionReturnTypeInference tfrti = (TableFunctionReturnTypeInference) rti; return tfrti.getColumnMappings(); } else { return null; } } protected RelNode createJoin( Blackboard bb, RelNode leftRel, RelNode rightRel, RexNode joinCond, JoinRelType joinType) { assert joinCond != null; final CorrelationUse p = getCorrelationUse(bb, rightRel); if (p != null) { LogicalCorrelate corr = LogicalCorrelate.create(leftRel, p.r, p.id, p.requiredColumns, SemiJoinType.of(joinType)); if (!joinCond.isAlwaysTrue()) { final RelFactories.FilterFactory factory = RelFactories.DEFAULT_FILTER_FACTORY; return factory.createFilter(corr, joinCond); } return corr; } final Join originalJoin = (Join) RelFactories.DEFAULT_JOIN_FACTORY.createJoin(leftRel, rightRel, joinCond, ImmutableSet.of(), joinType, false); return RelOptUtil.pushDownJoinConditions(originalJoin, relBuilder); } private CorrelationUse getCorrelationUse(Blackboard bb, final RelNode r0) { final Set correlatedVariables = RelOptUtil.getVariablesUsed(r0); if (correlatedVariables.isEmpty()) { return null; } final ImmutableBitSet.Builder requiredColumns = ImmutableBitSet.builder(); final List correlNames = new ArrayList<>(); // All correlations must refer the same namespace since correlation // produces exactly one correlation source. // The same source might be referenced by different variables since // DeferredLookups are not de-duplicated at create time. SqlValidatorNamespace prevNs = null; for (CorrelationId correlName : correlatedVariables) { DeferredLookup lookup = mapCorrelToDeferred.get(correlName); RexFieldAccess fieldAccess = lookup.getFieldAccess(correlName); String originalRelName = lookup.getOriginalRelName(); String originalFieldName = fieldAccess.getField().getName(); final SqlNameMatcher nameMatcher = bb.getValidator().getCatalogReader().nameMatcher(); final SqlValidatorScope.ResolvedImpl resolved = new SqlValidatorScope.ResolvedImpl(); lookup.bb.scope.resolve(ImmutableList.of(originalRelName), nameMatcher, false, resolved); assert resolved.count() == 1; final SqlValidatorScope.Resolve resolve = resolved.only(); final SqlValidatorNamespace foundNs = resolve.namespace; final RelDataType rowType = resolve.rowType(); final int childNamespaceIndex = resolve.path.steps().get(0).i; final SqlValidatorScope ancestorScope = resolve.scope; boolean correlInCurrentScope = bb.scope.isWithin(ancestorScope); if (!correlInCurrentScope) { continue; } if (prevNs == null) { prevNs = foundNs; } else { assert prevNs == foundNs : "All correlation variables should resolve" + " to the same namespace." + " Prev ns=" + prevNs + ", new ns=" + foundNs; } int namespaceOffset = 0; if (childNamespaceIndex > 0) { // If not the first child, need to figure out the width // of output types from all the preceding namespaces assert ancestorScope instanceof ListScope; List children = ((ListScope) ancestorScope).getChildren(); for (int i = 0; i < childNamespaceIndex; i++) { SqlValidatorNamespace child = children.get(i); namespaceOffset += child.getRowType().getFieldCount(); } } RexFieldAccess topLevelFieldAccess = fieldAccess; while (topLevelFieldAccess.getReferenceExpr() instanceof RexFieldAccess) { topLevelFieldAccess = (RexFieldAccess) topLevelFieldAccess.getReferenceExpr(); } final RelDataTypeField field = rowType.getFieldList() .get(topLevelFieldAccess.getField().getIndex() - namespaceOffset); int pos = namespaceOffset + field.getIndex(); assert field.getType() == topLevelFieldAccess.getField().getType(); assert pos != -1; if (bb.mapRootRelToFieldProjection.containsKey(bb.root)) { // bb.root is an aggregate and only projects group by // keys. Map exprProjection = bb.mapRootRelToFieldProjection.get(bb.root); // sub-query can reference group by keys projected from // the root of the outer relation. if (exprProjection.containsKey(pos)) { pos = exprProjection.get(pos); } else { // correl not grouped throw new AssertionError("Identifier '" + originalRelName + "." + originalFieldName + "' is not a group expr"); } } requiredColumns.set(pos); correlNames.add(correlName); } if (correlNames.isEmpty()) { // None of the correlating variables originated in this scope. return null; } RelNode r = r0; if (correlNames.size() > 1) { // The same table was referenced more than once. // So we deduplicate. r = DeduplicateCorrelateVariables.go(rexBuilder, correlNames.get(0), Util.skip(correlNames), r0); // Add new node to leaves. leaves.add(r); } return new CorrelationUse(correlNames.get(0), requiredColumns.build(), r); } /** * Determines whether a sub-query is non-correlated. Note that a * non-correlated sub-query can contain correlated references, provided those * references do not reference select statements that are parents of the * sub-query. * * @param subq the sub-query * @param bb blackboard used while converting the sub-query, i.e., the * blackboard of the parent query of this sub-query * @return true if the sub-query is non-correlated */ private boolean isSubQueryNonCorrelated(RelNode subq, Blackboard bb) { Set correlatedVariables = RelOptUtil.getVariablesUsed(subq); for (CorrelationId correlName : correlatedVariables) { DeferredLookup lookup = mapCorrelToDeferred.get(correlName); String originalRelName = lookup.getOriginalRelName(); final SqlNameMatcher nameMatcher = lookup.bb.scope.getValidator().getCatalogReader().nameMatcher(); final SqlValidatorScope.ResolvedImpl resolved = new SqlValidatorScope.ResolvedImpl(); lookup.bb.scope.resolve(ImmutableList.of(originalRelName), nameMatcher, false, resolved); SqlValidatorScope ancestorScope = resolved.only().scope; // If the correlated reference is in a scope that's "above" the // sub-query, then this is a correlated sub-query. SqlValidatorScope parentScope = bb.scope; do { if (ancestorScope == parentScope) { return false; } if (parentScope instanceof DelegatingScope) { parentScope = ((DelegatingScope) parentScope).getParent(); } else { break; } } while (parentScope != null); } return true; } /** * Returns a list of fields to be prefixed to each relational expression. * * @return List of system fields */ protected List getSystemFields() { return Collections.emptyList(); } private RexNode convertJoinCondition(Blackboard bb, SqlValidatorNamespace leftNamespace, SqlValidatorNamespace rightNamespace, SqlNode condition, JoinConditionType conditionType, RelNode leftRel, RelNode rightRel) { if (condition == null) { return rexBuilder.makeLiteral(true); } bb.setRoot(ImmutableList.of(leftRel, rightRel)); replaceSubQueries(bb, condition, RelOptUtil.Logic.UNKNOWN_AS_FALSE); switch (conditionType) { case ON: bb.setRoot(ImmutableList.of(leftRel, rightRel)); return bb.convertExpression(condition); case USING: final SqlNodeList list = (SqlNodeList) condition; final List nameList = new ArrayList<>(); for (SqlNode columnName : list) { final SqlIdentifier id = (SqlIdentifier) columnName; String name = id.getSimple(); nameList.add(name); } return convertUsing(leftNamespace, rightNamespace, nameList); default: throw Util.unexpected(conditionType); } } /** * Returns an expression for matching columns of a USING clause or inferred * from NATURAL JOIN. "a JOIN b USING (x, y)" becomes "a.x = b.x AND a.y = * b.y". Returns null if the column list is empty. * * @param leftNamespace Namespace of left input to join * @param rightNamespace Namespace of right input to join * @param nameList List of column names to join on * @return Expression to match columns from name list, or true if name list * is empty */ private RexNode convertUsing(SqlValidatorNamespace leftNamespace, SqlValidatorNamespace rightNamespace, List nameList) { final SqlNameMatcher nameMatcher = catalogReader.nameMatcher(); final List list = new ArrayList<>(); for (String name : nameList) { List operands = new ArrayList<>(); int offset = 0; for (SqlValidatorNamespace n : ImmutableList.of(leftNamespace, rightNamespace)) { final RelDataType rowType = n.getRowType(); final RelDataTypeField field = nameMatcher.field(rowType, name); operands.add( rexBuilder.makeInputRef(field.getType(), offset + field.getIndex())); offset += rowType.getFieldList().size(); } list.add(rexBuilder.makeCall(SqlStdOperatorTable.EQUALS, operands)); } return RexUtil.composeConjunction(rexBuilder, list, false); } private static JoinRelType convertJoinType(JoinType joinType) { switch (joinType) { case COMMA: case INNER: case CROSS: return JoinRelType.INNER; case FULL: return JoinRelType.FULL; case LEFT: return JoinRelType.LEFT; case RIGHT: return JoinRelType.RIGHT; default: throw Util.unexpected(joinType); } } /** * Converts the SELECT, GROUP BY and HAVING clauses of an aggregate query. * *

This method extracts SELECT, GROUP BY and HAVING clauses, and creates * an {@link AggConverter}, then delegates to {@link #createAggImpl}. * Derived class may override this method to change any of those clauses or * specify a different {@link AggConverter}. * * @param bb Scope within which to resolve identifiers * @param select Query * @param orderExprList Additional expressions needed to implement ORDER BY */ protected void convertAgg( Blackboard bb, SqlSelect select, List orderExprList) { assert bb.root != null : "precondition: child != null"; SqlNodeList groupList = select.getGroup(); SqlNodeList selectList = select.getSelectList(); SqlNode having = select.getHaving(); final AggConverter aggConverter = new AggConverter(bb, select); createAggImpl( bb, aggConverter, selectList, groupList, having, orderExprList); } protected final void createAggImpl( Blackboard bb, final AggConverter aggConverter, SqlNodeList selectList, SqlNodeList groupList, SqlNode having, List orderExprList) { // Find aggregate functions in SELECT and HAVING clause final AggregateFinder aggregateFinder = new AggregateFinder(); selectList.accept(aggregateFinder); if (having != null) { having.accept(aggregateFinder); } // first replace the sub-queries inside the aggregates // because they will provide input rows to the aggregates. replaceSubQueries(bb, aggregateFinder.list, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); // also replace sub-queries inside filters in the aggregates replaceSubQueries(bb, aggregateFinder.filterList, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); // If group-by clause is missing, pretend that it has zero elements. if (groupList == null) { groupList = SqlNodeList.EMPTY; } replaceSubQueries(bb, groupList, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); // register the group exprs // build a map to remember the projections from the top scope to the // output of the current root. // // Calcite allows expressions, not just column references in // group by list. This is not SQL 2003 compliant, but hey. final AggregatingSelectScope scope = aggConverter.aggregatingSelectScope; final AggregatingSelectScope.Resolved r = scope.resolved.get(); for (SqlNode groupExpr : r.groupExprList) { aggConverter.addGroupExpr(groupExpr); } final RexNode havingExpr; final List> projects = new ArrayList<>(); try { Preconditions.checkArgument(bb.agg == null, "already in agg mode"); bb.agg = aggConverter; // convert the select and having expressions, so that the // agg converter knows which aggregations are required selectList.accept(aggConverter); // Assert we don't have dangling items left in the stack assert !aggConverter.inOver; for (SqlNode expr : orderExprList) { expr.accept(aggConverter); assert !aggConverter.inOver; } if (having != null) { having.accept(aggConverter); assert !aggConverter.inOver; } // compute inputs to the aggregator List> preExprs = aggConverter.getPreExprs(); if (preExprs.size() == 0) { // Special case for COUNT(*), where we can end up with no inputs // at all. The rest of the system doesn't like 0-tuples, so we // select a dummy constant here. final RexNode zero = rexBuilder.makeExactLiteral(BigDecimal.ZERO); preExprs = ImmutableList.of(Pair.of(zero, (String) null)); } final RelNode inputRel = bb.root; // Project the expressions required by agg and having. bb.setRoot( relBuilder.push(inputRel) .projectNamed(Pair.left(preExprs), Pair.right(preExprs), false) .build(), false); bb.mapRootRelToFieldProjection.put(bb.root, r.groupExprProjection); // REVIEW jvs 31-Oct-2007: doesn't the declaration of // monotonicity here assume sort-based aggregation at // the physical level? // Tell bb which of group columns are sorted. bb.columnMonotonicities.clear(); for (SqlNode groupItem : groupList) { bb.columnMonotonicities.add( bb.scope.getMonotonicity(groupItem)); } // Add the aggregator bb.setRoot( createAggregate(bb, r.groupSet, r.groupSets, aggConverter.getAggCalls()), false); bb.mapRootRelToFieldProjection.put(bb.root, r.groupExprProjection); // Replace sub-queries in having here and modify having to use // the replaced expressions if (having != null) { SqlNode newHaving = pushDownNotForIn(bb.scope, having); replaceSubQueries(bb, newHaving, RelOptUtil.Logic.UNKNOWN_AS_FALSE); havingExpr = bb.convertExpression(newHaving); } else { havingExpr = relBuilder.literal(true); } // Now convert the other sub-queries in the select list. // This needs to be done separately from the sub-query inside // any aggregate in the select list, and after the aggregate rel // is allocated. replaceSubQueries(bb, selectList, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); // Now sub-queries in the entire select list have been converted. // Convert the select expressions to get the final list to be // projected. int k = 0; // For select expressions, use the field names previously assigned // by the validator. If we derive afresh, we might generate names // like "EXPR$2" that don't match the names generated by the // validator. This is especially the case when there are system // fields; system fields appear in the relnode's rowtype but do not // (yet) appear in the validator type. final SelectScope selectScope = SqlValidatorUtil.getEnclosingSelectScope(bb.scope); assert selectScope != null; final SqlValidatorNamespace selectNamespace = validator.getNamespace(selectScope.getNode()); final List names = selectNamespace.getRowType().getFieldNames(); int sysFieldCount = selectList.size() - names.size(); for (SqlNode expr : selectList) { projects.add( Pair.of(bb.convertExpression(expr), k < sysFieldCount ? validator.deriveAlias(expr, k++) : names.get(k++ - sysFieldCount))); } for (SqlNode expr : orderExprList) { projects.add( Pair.of(bb.convertExpression(expr), validator.deriveAlias(expr, k++))); } } finally { bb.agg = null; } // implement HAVING (we have already checked that it is non-trivial) relBuilder.push(bb.root); if (havingExpr != null) { relBuilder.filter(havingExpr); } // implement the SELECT list relBuilder.project(Pair.left(projects), Pair.right(projects)) .rename(Pair.right(projects)); bb.setRoot(relBuilder.build(), false); // Tell bb which of group columns are sorted. bb.columnMonotonicities.clear(); for (SqlNode selectItem : selectList) { bb.columnMonotonicities.add( bb.scope.getMonotonicity(selectItem)); } } /** * Creates an Aggregate. * *

In case the aggregate rel changes the order in which it projects * fields, the groupExprProjection parameter is provided, and * the implementation of this method may modify it. * *

The sortedCount parameter is the number of expressions * known to be monotonic. These expressions must be on the leading edge of * the grouping keys. The default implementation of this method ignores this * parameter. * * @param bb Blackboard * @param groupSet Bit set of ordinals of grouping columns * @param groupSets Grouping sets * @param aggCalls Array of calls to aggregate functions * @return LogicalAggregate */ protected RelNode createAggregate(Blackboard bb, ImmutableBitSet groupSet, ImmutableList groupSets, List aggCalls) { return LogicalAggregate.create(bb.root, groupSet, groupSets, aggCalls); } public RexDynamicParam convertDynamicParam( final SqlDynamicParam dynamicParam) { // REVIEW jvs 8-Jan-2005: dynamic params may be encountered out of // order. Should probably cross-check with the count from the parser // at the end and make sure they all got filled in. Why doesn't List // have a resize() method?!? Make this a utility. while (dynamicParam.getIndex() >= dynamicParamSqlNodes.size()) { dynamicParamSqlNodes.add(null); } dynamicParamSqlNodes.set( dynamicParam.getIndex(), dynamicParam); return rexBuilder.makeDynamicParam( getDynamicParamType(dynamicParam.getIndex()), dynamicParam.getIndex()); } /** * Creates a list of collations required to implement the ORDER BY clause, * if there is one. Populates extraOrderExprs with any sort * expressions which are not in the select clause. * * @param bb Scope within which to resolve identifiers * @param select Select clause. Never null, because we invent a * dummy SELECT if ORDER BY is applied to a set * operation (UNION etc.) * @param orderList Order by clause, may be null * @param extraOrderExprs Sort expressions which are not in the select * clause (output) * @param collationList List of collations (output) */ protected void gatherOrderExprs( Blackboard bb, SqlSelect select, SqlNodeList orderList, List extraOrderExprs, List collationList) { // TODO: add validation rules to SqlValidator also assert bb.root != null : "precondition: child != null"; assert select != null; if (orderList == null) { return; } for (SqlNode orderItem : orderList) { collationList.add( convertOrderItem(select, orderItem, extraOrderExprs, RelFieldCollation.Direction.ASCENDING, RelFieldCollation.NullDirection.UNSPECIFIED)); } } protected RelFieldCollation convertOrderItem( SqlSelect select, SqlNode orderItem, List extraExprs, RelFieldCollation.Direction direction, RelFieldCollation.NullDirection nullDirection) { assert select != null; // Handle DESC keyword, e.g. 'select a, b from t order by a desc'. switch (orderItem.getKind()) { case DESCENDING: return convertOrderItem( select, ((SqlCall) orderItem).operand(0), extraExprs, RelFieldCollation.Direction.DESCENDING, nullDirection); case NULLS_FIRST: return convertOrderItem( select, ((SqlCall) orderItem).operand(0), extraExprs, direction, RelFieldCollation.NullDirection.FIRST); case NULLS_LAST: return convertOrderItem( select, ((SqlCall) orderItem).operand(0), extraExprs, direction, RelFieldCollation.NullDirection.LAST); } SqlNode converted = validator.expandOrderExpr(select, orderItem); switch (nullDirection) { case UNSPECIFIED: nullDirection = validator.getDefaultNullCollation().last(desc(direction)) ? RelFieldCollation.NullDirection.LAST : RelFieldCollation.NullDirection.FIRST; } // Scan the select list and order exprs for an identical expression. final SelectScope selectScope = validator.getRawSelectScope(select); int ordinal = -1; for (SqlNode selectItem : selectScope.getExpandedSelectList()) { ++ordinal; if (converted.equalsDeep(stripAs(selectItem), Litmus.IGNORE)) { return new RelFieldCollation(ordinal, direction, nullDirection); } } for (SqlNode extraExpr : extraExprs) { ++ordinal; if (converted.equalsDeep(extraExpr, Litmus.IGNORE)) { return new RelFieldCollation(ordinal, direction, nullDirection); } } // TODO: handle collation sequence // TODO: flag expressions as non-standard extraExprs.add(converted); return new RelFieldCollation(ordinal + 1, direction, nullDirection); } private static boolean desc(RelFieldCollation.Direction direction) { switch (direction) { case DESCENDING: case STRICTLY_DESCENDING: return true; default: return false; } } @Deprecated // to be removed before 2.0 protected boolean enableDecorrelation() { // disable sub-query decorrelation when needed. // e.g. if outer joins are not supported. return config.isDecorrelationEnabled(); } protected RelNode decorrelateQuery(RelNode rootRel) { return RelDecorrelator.decorrelateQuery(rootRel, relBuilder); } /** * Returns whether to trim unused fields as part of the conversion process. * * @return Whether to trim unused fields */ @Deprecated // to be removed before 2.0 public boolean isTrimUnusedFields() { return config.isTrimUnusedFields(); } /** * Recursively converts a query to a relational expression. * * @param query Query * @param top Whether this query is the top-level query of the * statement * @param targetRowType Target row type, or null * @return Relational expression */ protected RelRoot convertQueryRecursive(SqlNode query, boolean top, RelDataType targetRowType) { final SqlKind kind = query.getKind(); switch (kind) { case SELECT: return RelRoot.of(convertSelect((SqlSelect) query, top), kind); case INSERT: return RelRoot.of(convertInsert((SqlInsert) query), kind); case DELETE: return RelRoot.of(convertDelete((SqlDelete) query), kind); case UPDATE: return RelRoot.of(convertUpdate((SqlUpdate) query), kind); case MERGE: return RelRoot.of(convertMerge((SqlMerge) query), kind); case UNION: case INTERSECT: case EXCEPT: return RelRoot.of(convertSetOp((SqlCall) query), kind); case WITH: return convertWith((SqlWith) query, top); case VALUES: return RelRoot.of(convertValues((SqlCall) query, targetRowType), kind); default: throw new AssertionError("not a query: " + query); } } /** * Converts a set operation (UNION, INTERSECT, MINUS) into relational * expressions. * * @param call Call to set operator * @return Relational expression */ protected RelNode convertSetOp(SqlCall call) { final RelNode left = convertQueryRecursive(call.operand(0), false, null).project(); final RelNode right = convertQueryRecursive(call.operand(1), false, null).project(); switch (call.getKind()) { case UNION: return LogicalUnion.create(ImmutableList.of(left, right), all(call)); case INTERSECT: return LogicalIntersect.create(ImmutableList.of(left, right), all(call)); case EXCEPT: return LogicalMinus.create(ImmutableList.of(left, right), all(call)); default: throw Util.unexpected(call.getKind()); } } private boolean all(SqlCall call) { return ((SqlSetOperator) call.getOperator()).isAll(); } protected RelNode convertInsert(SqlInsert call) { RelOptTable targetTable = getTargetTable(call); final RelDataType targetRowType = validator.getValidatedNodeType(call); assert targetRowType != null; RelNode sourceRel = convertQueryRecursive(call.getSource(), false, targetRowType).project(); RelNode massagedRel = convertColumnList(call, sourceRel); return createModify(targetTable, massagedRel); } /** Creates a relational expression to modify a table or modifiable view. */ private RelNode createModify(RelOptTable targetTable, RelNode source) { final ModifiableTable modifiableTable = targetTable.unwrap(ModifiableTable.class); if (modifiableTable != null && modifiableTable == targetTable.unwrap(Table.class)) { return modifiableTable.toModificationRel(cluster, targetTable, catalogReader, source, LogicalTableModify.Operation.INSERT, null, null, false); } final ModifiableView modifiableView = targetTable.unwrap(ModifiableView.class); if (modifiableView != null) { final Table delegateTable = modifiableView.getTable(); final RelDataType delegateRowType = delegateTable.getRowType(typeFactory); final RelOptTable delegateRelOptTable = RelOptTableImpl.create(null, delegateRowType, delegateTable, modifiableView.getTablePath()); final RelNode newSource = createSource(targetTable, source, modifiableView, delegateRowType); return createModify(delegateRelOptTable, newSource); } return LogicalTableModify.create(targetTable, catalogReader, source, LogicalTableModify.Operation.INSERT, null, null, false); } /** Wraps a relational expression in the projects and filters implied by * a {@link ModifiableView}. * *

The input relational expression is suitable for inserting into the view, * and the returned relational expression is suitable for inserting into its * delegate table. * *

In principle, the delegate table of a view might be another modifiable * view, and if so, the process can be repeated. */ private RelNode createSource(RelOptTable targetTable, RelNode source, ModifiableView modifiableView, RelDataType delegateRowType) { final ImmutableIntList mapping = modifiableView.getColumnMapping(); assert mapping.size() == targetTable.getRowType().getFieldCount(); // For columns represented in the mapping, the expression is just a field // reference. final Map projectMap = new HashMap<>(); final List filters = new ArrayList<>(); for (int i = 0; i < mapping.size(); i++) { int target = mapping.get(i); if (target >= 0) { projectMap.put(target, RexInputRef.of(i, source.getRowType())); } } // For columns that are not in the mapping, and have a constraint of the // form "column = value", the expression is the literal "value". // // If a column has multiple constraints, the extra ones will become a // filter. final RexNode constraint = modifiableView.getConstraint(rexBuilder, delegateRowType); RelOptUtil.inferViewPredicates(projectMap, filters, constraint); final List> projects = new ArrayList<>(); for (RelDataTypeField field : delegateRowType.getFieldList()) { RexNode node = projectMap.get(field.getIndex()); if (node == null) { node = rexBuilder.makeNullLiteral(field.getType()); } projects.add( Pair.of(rexBuilder.ensureType(field.getType(), node, false), field.getName())); } return relBuilder.push(source) .projectNamed(Pair.left(projects), Pair.right(projects), false) .filter(filters) .build(); } private RelOptTable.ToRelContext createToRelContext() { return new RelOptTable.ToRelContext() { public RelOptCluster getCluster() { return cluster; } @Override public RelRoot expandView( RelDataType rowType, String queryString, List schemaPath, List viewPath) { return viewExpander.expandView(rowType, queryString, schemaPath, viewPath); } }; } public RelNode toRel(final RelOptTable table) { final RelNode scan = table.toRel(createToRelContext()); final InitializerExpressionFactory ief = Util.first(table.unwrap(InitializerExpressionFactory.class), NullInitializerExpressionFactory.INSTANCE); // Lazily create a blackboard that contains all non-generated columns. final Supplier bb = () -> { RexNode sourceRef = rexBuilder.makeRangeReference(scan); return createInsertBlackboard(table, sourceRef, table.getRowType().getFieldNames()); }; int virtualCount = 0; final List list = new ArrayList<>(); for (RelDataTypeField f : table.getRowType().getFieldList()) { final ColumnStrategy strategy = ief.generationStrategy(table, f.getIndex()); switch (strategy) { case VIRTUAL: list.add(ief.newColumnDefaultValue(table, f.getIndex(), bb.get())); ++virtualCount; break; default: list.add( rexBuilder.makeInputRef(scan, RelOptTableImpl.realOrdinal(table, f.getIndex()))); } } if (virtualCount > 0) { relBuilder.push(scan); relBuilder.project(list); return relBuilder.build(); } return scan; } protected RelOptTable getTargetTable(SqlNode call) { final SqlValidatorNamespace targetNs = validator.getNamespace(call); if (targetNs.isWrapperFor(SqlValidatorImpl.DmlNamespace.class)) { final SqlValidatorImpl.DmlNamespace dmlNamespace = targetNs.unwrap(SqlValidatorImpl.DmlNamespace.class); return SqlValidatorUtil.getRelOptTable(dmlNamespace, catalogReader, null, null); } final SqlValidatorNamespace resolvedNamespace = targetNs.resolve(); return SqlValidatorUtil.getRelOptTable(resolvedNamespace, catalogReader, null, null); } /** * Creates a source for an INSERT statement. * *

If the column list is not specified, source expressions match target * columns in order. * *

If the column list is specified, Source expressions are mapped to * target columns by name via targetColumnList, and may not cover the entire * target table. So, we'll make up a full row, using a combination of * default values and the source expressions provided. * * @param call Insert expression * @param source Source relational expression * @return Converted INSERT statement */ protected RelNode convertColumnList(final SqlInsert call, RelNode source) { RelDataType sourceRowType = source.getRowType(); final RexNode sourceRef = rexBuilder.makeRangeReference(sourceRowType, 0, false); final List targetColumnNames = new ArrayList<>(); final List columnExprs = new ArrayList<>(); collectInsertTargets(call, sourceRef, targetColumnNames, columnExprs); final RelOptTable targetTable = getTargetTable(call); final RelDataType targetRowType = RelOptTableImpl.realRowType(targetTable); final List targetFields = targetRowType.getFieldList(); final List sourceExps = new ArrayList<>( Collections.nCopies(targetFields.size(), null)); final List fieldNames = new ArrayList<>( Collections.nCopies(targetFields.size(), null)); final InitializerExpressionFactory initializerFactory = getInitializerFactory(validator.getNamespace(call).getTable()); // Walk the name list and place the associated value in the // expression list according to the ordinal value returned from // the table construct, leaving nulls in the list for columns // that are not referenced. final SqlNameMatcher nameMatcher = catalogReader.nameMatcher(); for (Pair p : Pair.zip(targetColumnNames, columnExprs)) { RelDataTypeField field = nameMatcher.field(targetRowType, p.left); assert field != null : "column " + p.left + " not found"; sourceExps.set(field.getIndex(), p.right); } // Lazily create a blackboard that contains all non-generated columns. final Supplier bb = () -> createInsertBlackboard(targetTable, sourceRef, targetColumnNames); // Walk the expression list and get default values for any columns // that were not supplied in the statement. Get field names too. for (int i = 0; i < targetFields.size(); ++i) { final RelDataTypeField field = targetFields.get(i); final String fieldName = field.getName(); fieldNames.set(i, fieldName); if (sourceExps.get(i) == null || sourceExps.get(i).getKind() == SqlKind.DEFAULT) { sourceExps.set(i, initializerFactory.newColumnDefaultValue(targetTable, i, bb.get())); // bare nulls are dangerous in the wrong hands sourceExps.set(i, castNullLiteralIfNeeded(sourceExps.get(i), field.getType())); } } return relBuilder.push(source) .projectNamed(sourceExps, fieldNames, false) .build(); } /** Creates a blackboard for translating the expressions of generated columns * in an INSERT statement. */ private Blackboard createInsertBlackboard(RelOptTable targetTable, RexNode sourceRef, List targetColumnNames) { final Map nameToNodeMap = new HashMap<>(); int j = 0; // Assign expressions for non-generated columns. final List strategies = targetTable.getColumnStrategies(); final List targetFields = targetTable.getRowType().getFieldNames(); for (String targetColumnName : targetColumnNames) { final int i = targetFields.indexOf(targetColumnName); switch (strategies.get(i)) { case STORED: case VIRTUAL: break; default: nameToNodeMap.put(targetColumnName, rexBuilder.makeFieldAccess(sourceRef, j++)); } } return createBlackboard(null, nameToNodeMap, false); } private InitializerExpressionFactory getInitializerFactory( SqlValidatorTable validatorTable) { // We might unwrap a null instead of a InitializerExpressionFactory. final Table table = unwrap(validatorTable, Table.class); if (table != null) { InitializerExpressionFactory f = unwrap(table, InitializerExpressionFactory.class); if (f != null) { return f; } } return NullInitializerExpressionFactory.INSTANCE; } private static T unwrap(Object o, Class clazz) { if (o instanceof Wrapper) { return ((Wrapper) o).unwrap(clazz); } return null; } private RexNode castNullLiteralIfNeeded(RexNode node, RelDataType type) { if (!RexLiteral.isNullLiteral(node)) { return node; } return rexBuilder.makeCast(type, node); } /** * Given an INSERT statement, collects the list of names to be populated and * the expressions to put in them. * * @param call Insert statement * @param sourceRef Expression representing a row from the source * relational expression * @param targetColumnNames List of target column names, to be populated * @param columnExprs List of expressions, to be populated */ protected void collectInsertTargets( SqlInsert call, final RexNode sourceRef, final List targetColumnNames, List columnExprs) { final RelOptTable targetTable = getTargetTable(call); final RelDataType tableRowType = targetTable.getRowType(); SqlNodeList targetColumnList = call.getTargetColumnList(); if (targetColumnList == null) { if (validator.getConformance().isInsertSubsetColumnsAllowed()) { final RelDataType targetRowType = typeFactory.createStructType( tableRowType.getFieldList() .subList(0, sourceRef.getType().getFieldCount())); targetColumnNames.addAll(targetRowType.getFieldNames()); } else { targetColumnNames.addAll(tableRowType.getFieldNames()); } } else { for (int i = 0; i < targetColumnList.size(); i++) { SqlIdentifier id = (SqlIdentifier) targetColumnList.get(i); RelDataTypeField field = SqlValidatorUtil.getTargetField( tableRowType, typeFactory, id, catalogReader, targetTable); assert field != null : "column " + id.toString() + " not found"; targetColumnNames.add(field.getName()); } } final Blackboard bb = createInsertBlackboard(targetTable, sourceRef, targetColumnNames); // Next, assign expressions for generated columns. final List strategies = targetTable.getColumnStrategies(); for (String columnName : targetColumnNames) { final int i = tableRowType.getFieldNames().indexOf(columnName); final RexNode expr; switch (strategies.get(i)) { case STORED: final InitializerExpressionFactory f = Util.first(targetTable.unwrap(InitializerExpressionFactory.class), NullInitializerExpressionFactory.INSTANCE); expr = f.newColumnDefaultValue(targetTable, i, bb); break; case VIRTUAL: expr = null; break; default: expr = bb.nameToNodeMap.get(columnName); } columnExprs.add(expr); } // Remove virtual columns from the list. for (int i = 0; i < targetColumnNames.size(); i++) { if (columnExprs.get(i) == null) { columnExprs.remove(i); targetColumnNames.remove(i); --i; } } } private RelNode convertDelete(SqlDelete call) { RelOptTable targetTable = getTargetTable(call); RelNode sourceRel = convertSelect(call.getSourceSelect(), false); return LogicalTableModify.create(targetTable, catalogReader, sourceRel, LogicalTableModify.Operation.DELETE, null, null, false); } private RelNode convertUpdate(SqlUpdate call) { final SqlValidatorScope scope = validator.getWhereScope(call.getSourceSelect()); Blackboard bb = createBlackboard(scope, null, false); Builder rexNodeSourceExpressionListBuilder = ImmutableList.builder(); for (SqlNode n : call.getSourceExpressionList()) { RexNode rn = bb.convertExpression(n); rexNodeSourceExpressionListBuilder.add(rn); } RelOptTable targetTable = getTargetTable(call); // convert update column list from SqlIdentifier to String final List targetColumnNameList = new ArrayList<>(); final RelDataType targetRowType = targetTable.getRowType(); for (SqlNode node : call.getTargetColumnList()) { SqlIdentifier id = (SqlIdentifier) node; RelDataTypeField field = SqlValidatorUtil.getTargetField( targetRowType, typeFactory, id, catalogReader, targetTable); assert field != null : "column " + id.toString() + " not found"; targetColumnNameList.add(field.getName()); } RelNode sourceRel = convertSelect(call.getSourceSelect(), false); return LogicalTableModify.create(targetTable, catalogReader, sourceRel, LogicalTableModify.Operation.UPDATE, targetColumnNameList, rexNodeSourceExpressionListBuilder.build(), false); } private RelNode convertMerge(SqlMerge call) { RelOptTable targetTable = getTargetTable(call); // convert update column list from SqlIdentifier to String final List targetColumnNameList = new ArrayList<>(); final RelDataType targetRowType = targetTable.getRowType(); SqlUpdate updateCall = call.getUpdateCall(); if (updateCall != null) { for (SqlNode targetColumn : updateCall.getTargetColumnList()) { SqlIdentifier id = (SqlIdentifier) targetColumn; RelDataTypeField field = SqlValidatorUtil.getTargetField( targetRowType, typeFactory, id, catalogReader, targetTable); assert field != null : "column " + id.toString() + " not found"; targetColumnNameList.add(field.getName()); } } // replace the projection of the source select with a // projection that contains the following: // 1) the expressions corresponding to the new insert row (if there is // an insert) // 2) all columns from the target table (if there is an update) // 3) the set expressions in the update call (if there is an update) // first, convert the merge's source select to construct the columns // from the target table and the set expressions in the update call RelNode mergeSourceRel = convertSelect(call.getSourceSelect(), false); // then, convert the insert statement so we can get the insert // values expressions SqlInsert insertCall = call.getInsertCall(); int nLevel1Exprs = 0; List level1InsertExprs = null; List level2InsertExprs = null; if (insertCall != null) { RelNode insertRel = convertInsert(insertCall); // if there are 2 level of projections in the insert source, combine // them into a single project; level1 refers to the topmost project; // the level1 projection contains references to the level2 // expressions, except in the case where no target expression was // provided, in which case, the expression is the default value for // the column; or if the expressions directly map to the source // table level1InsertExprs = ((LogicalProject) insertRel.getInput(0)).getProjects(); if (insertRel.getInput(0).getInput(0) instanceof LogicalProject) { level2InsertExprs = ((LogicalProject) insertRel.getInput(0).getInput(0)) .getProjects(); } nLevel1Exprs = level1InsertExprs.size(); } LogicalJoin join = (LogicalJoin) mergeSourceRel.getInput(0); int nSourceFields = join.getLeft().getRowType().getFieldCount(); final List projects = new ArrayList<>(); for (int level1Idx = 0; level1Idx < nLevel1Exprs; level1Idx++) { if ((level2InsertExprs != null) && (level1InsertExprs.get(level1Idx) instanceof RexInputRef)) { int level2Idx = ((RexInputRef) level1InsertExprs.get(level1Idx)).getIndex(); projects.add(level2InsertExprs.get(level2Idx)); } else { projects.add(level1InsertExprs.get(level1Idx)); } } if (updateCall != null) { final LogicalProject project = (LogicalProject) mergeSourceRel; projects.addAll( Util.skip(project.getProjects(), nSourceFields)); } relBuilder.push(join) .project(projects); return LogicalTableModify.create(targetTable, catalogReader, relBuilder.build(), LogicalTableModify.Operation.MERGE, targetColumnNameList, null, false); } /** * Converts an identifier into an expression in a given scope. For example, * the "empno" in "select empno from emp join dept" becomes "emp.empno". */ private RexNode convertIdentifier( Blackboard bb, SqlIdentifier identifier) { // first check for reserved identifiers like CURRENT_USER final SqlCall call = SqlUtil.makeCall(opTab, identifier); if (call != null) { return bb.convertExpression(call); } String pv = null; if (bb.isPatternVarRef && identifier.names.size() > 1) { pv = identifier.names.get(0); } final SqlQualified qualified; if (bb.scope != null) { qualified = bb.scope.fullyQualify(identifier); } else { qualified = SqlQualified.create(null, 1, null, identifier); } final Pair> e0 = bb.lookupExp(qualified); RexNode e = e0.left; for (String name : qualified.suffix()) { if (e == e0.left && e0.right != null) { int i = e0.right.get(name); e = rexBuilder.makeFieldAccess(e, i); } else { final boolean caseSensitive = true; // name already fully-qualified if (identifier.isStar() && bb.scope instanceof MatchRecognizeScope) { e = rexBuilder.makeFieldAccess(e, 0); } else { e = rexBuilder.makeFieldAccess(e, name, caseSensitive); } } } if (e instanceof RexInputRef) { // adjust the type to account for nulls introduced by outer joins e = adjustInputRef(bb, (RexInputRef) e); if (pv != null) { e = RexPatternFieldRef.of(pv, (RexInputRef) e); } } if (e0.left instanceof RexCorrelVariable) { assert e instanceof RexFieldAccess; final RexNode prev = bb.mapCorrelateToRex.put(((RexCorrelVariable) e0.left).id, (RexFieldAccess) e); assert prev == null; } return e; } /** * Adjusts the type of a reference to an input field to account for nulls * introduced by outer joins; and adjusts the offset to match the physical * implementation. * * @param bb Blackboard * @param inputRef Input ref * @return Adjusted input ref */ protected RexNode adjustInputRef( Blackboard bb, RexInputRef inputRef) { RelDataTypeField field = bb.getRootField(inputRef); if (field != null) { return rexBuilder.makeInputRef( field.getType(), inputRef.getIndex()); } return inputRef; } /** * Converts a row constructor into a relational expression. * * @param bb Blackboard * @param rowConstructor Row constructor expression * @return Relational expression which returns a single row. */ private RelNode convertRowConstructor( Blackboard bb, SqlCall rowConstructor) { Preconditions.checkArgument(isRowConstructor(rowConstructor)); final List operands = rowConstructor.getOperandList(); return convertMultisets(operands, bb); } private RelNode convertCursor(Blackboard bb, SubQuery subQuery) { final SqlCall cursorCall = (SqlCall) subQuery.node; assert cursorCall.operandCount() == 1; SqlNode query = cursorCall.operand(0); RelNode converted = convertQuery(query, false, false).rel; int iCursor = bb.cursors.size(); bb.cursors.add(converted); subQuery.expr = new RexInputRef( iCursor, converted.getRowType()); return converted; } private RelNode convertMultisets(final List operands, Blackboard bb) { // NOTE: Wael 2/04/05: this implementation is not the most efficient in // terms of planning since it generates XOs that can be reduced. final List joinList = new ArrayList<>(); List lastList = new ArrayList<>(); for (int i = 0; i < operands.size(); i++) { SqlNode operand = operands.get(i); if (!(operand instanceof SqlCall)) { lastList.add(operand); continue; } final SqlCall call = (SqlCall) operand; final RelNode input; switch (call.getKind()) { case MULTISET_VALUE_CONSTRUCTOR: case ARRAY_VALUE_CONSTRUCTOR: final SqlNodeList list = new SqlNodeList(call.getOperandList(), call.getParserPosition()); CollectNamespace nss = (CollectNamespace) validator.getNamespace(call); Blackboard usedBb; if (null != nss) { usedBb = createBlackboard(nss.getScope(), null, false); } else { usedBb = createBlackboard(new ListScope(bb.scope) { public SqlNode getNode() { return call; } }, null, false); } RelDataType multisetType = validator.getValidatedNodeType(call); ((SqlValidatorImpl) validator).setValidatedNodeType(list, multisetType.getComponentType()); input = convertQueryOrInList(usedBb, list, null); break; case MULTISET_QUERY_CONSTRUCTOR: case ARRAY_QUERY_CONSTRUCTOR: final RelRoot root = convertQuery(call.operand(0), false, true); input = root.rel; break; default: lastList.add(operand); continue; } if (lastList.size() > 0) { joinList.add(lastList); } lastList = new ArrayList<>(); Collect collect = new Collect( cluster, cluster.traitSetOf(Convention.NONE), input, validator.deriveAlias(call, i)); joinList.add(collect); } if (joinList.size() == 0) { joinList.add(lastList); } for (int i = 0; i < joinList.size(); i++) { Object o = joinList.get(i); if (o instanceof List) { @SuppressWarnings("unchecked") List projectList = (List) o; final List selectList = new ArrayList<>(); final List fieldNameList = new ArrayList<>(); for (int j = 0; j < projectList.size(); j++) { SqlNode operand = projectList.get(j); selectList.add(bb.convertExpression(operand)); // REVIEW angel 5-June-2005: Use deriveAliasFromOrdinal // instead of deriveAlias to match field names from // SqlRowOperator. Otherwise, get error Type // 'RecordType(INTEGER EMPNO)' has no field 'EXPR$0' when // doing select * from unnest( select multiset[empno] // from sales.emps); fieldNameList.add(SqlUtil.deriveAliasFromOrdinal(j)); } relBuilder.push(LogicalValues.createOneRow(cluster)) .projectNamed(selectList, fieldNameList, true); joinList.set(i, relBuilder.build()); } } RelNode ret = (RelNode) joinList.get(0); for (int i = 1; i < joinList.size(); i++) { RelNode relNode = (RelNode) joinList.get(i); ret = RelFactories.DEFAULT_JOIN_FACTORY.createJoin( ret, relNode, rexBuilder.makeLiteral(true), ImmutableSet.of(), JoinRelType.INNER, false); } return ret; } private void convertSelectList( Blackboard bb, SqlSelect select, List orderList) { SqlNodeList selectList = select.getSelectList(); selectList = validator.expandStar(selectList, select, false); replaceSubQueries(bb, selectList, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); List fieldNames = new ArrayList<>(); final List exprs = new ArrayList<>(); final Collection aliases = new TreeSet<>(); // Project any system fields. (Must be done before regular select items, // because offsets may be affected.) final List columnMonotonicityList = new ArrayList<>(); extraSelectItems( bb, select, exprs, fieldNames, aliases, columnMonotonicityList); // Project select clause. int i = -1; for (SqlNode expr : selectList) { ++i; exprs.add(bb.convertExpression(expr)); fieldNames.add(deriveAlias(expr, aliases, i)); } // Project extra fields for sorting. for (SqlNode expr : orderList) { ++i; SqlNode expr2 = validator.expandOrderExpr(select, expr); exprs.add(bb.convertExpression(expr2)); fieldNames.add(deriveAlias(expr, aliases, i)); } fieldNames = SqlValidatorUtil.uniquify(fieldNames, catalogReader.nameMatcher().isCaseSensitive()); relBuilder.push(bb.root) .projectNamed(exprs, fieldNames, true); final RelNode project = relBuilder.build(); final CorrelationUse p = getCorrelationUse(bb, project); if (p != null) { throw new RuntimeException("correlation on project is not supported now"); } bb.setRoot(project, false); assert bb.columnMonotonicities.isEmpty(); bb.columnMonotonicities.addAll(columnMonotonicityList); for (SqlNode selectItem : selectList) { bb.columnMonotonicities.add( selectItem.getMonotonicity(bb.scope)); } } /** * Adds extra select items. The default implementation adds nothing; derived * classes may add columns to exprList, nameList, aliasList and * columnMonotonicityList. * * @param bb Blackboard * @param select Select statement being translated * @param exprList List of expressions in select clause * @param nameList List of names, one per column * @param aliasList Collection of aliases that have been used * already * @param columnMonotonicityList List of monotonicity, one per column */ protected void extraSelectItems( Blackboard bb, SqlSelect select, List exprList, List nameList, Collection aliasList, List columnMonotonicityList) { } private String deriveAlias( final SqlNode node, Collection aliases, final int ordinal) { String alias = validator.deriveAlias(node, ordinal); if ((alias == null) || aliases.contains(alias)) { String aliasBase = (alias == null) ? "EXPR$" : alias; for (int j = 0;; j++) { alias = aliasBase + j; if (!aliases.contains(alias)) { break; } } } aliases.add(alias); return alias; } /** * Converts a WITH sub-query into a relational expression. */ public RelRoot convertWith(SqlWith with, boolean top) { return convertQuery(with.body, false, top); } /** * Converts a SELECT statement's parse tree into a relational expression. */ public RelNode convertValues( SqlCall values, RelDataType targetRowType) { final SqlValidatorScope scope = validator.getOverScope(values); assert scope != null; final Blackboard bb = createBlackboard(scope, null, false); convertValuesImpl(bb, values, targetRowType); return bb.root; } /** * Converts a values clause (as in "INSERT INTO T(x,y) VALUES (1,2)") into a * relational expression. * * @param bb Blackboard * @param values Call to SQL VALUES operator * @param targetRowType Target row type */ private void convertValuesImpl( Blackboard bb, SqlCall values, RelDataType targetRowType) { // Attempt direct conversion to LogicalValues; if that fails, deal with // fancy stuff like sub-queries below. RelNode valuesRel = convertRowValues( bb, values, values.getOperandList(), true, targetRowType); if (valuesRel != null) { bb.setRoot(valuesRel, true); return; } final List unionRels = new ArrayList<>(); for (SqlNode rowConstructor1 : values.getOperandList()) { SqlCall rowConstructor = (SqlCall) rowConstructor1; Blackboard tmpBb = createBlackboard(bb.scope, null, false); replaceSubQueries(tmpBb, rowConstructor, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN); final List> exps = new ArrayList<>(); for (Ord operand : Ord.zip(rowConstructor.getOperandList())) { exps.add( Pair.of( tmpBb.convertExpression(operand.e), validator.deriveAlias(operand.e, operand.i))); } RelNode in = (null == tmpBb.root) ? LogicalValues.createOneRow(cluster) : tmpBb.root; unionRels.add(relBuilder.push(in) .project(Pair.left(exps), Pair.right(exps)) .build()); } if (unionRels.size() == 0) { throw new AssertionError("empty values clause"); } else if (unionRels.size() == 1) { bb.setRoot( unionRels.get(0), true); } else { bb.setRoot( LogicalUnion.create(unionRels, true), true); } // REVIEW jvs 22-Jan-2004: should I add // mapScopeToLux.put(validator.getScope(values),bb.root); // ? } //~ Inner Classes ---------------------------------------------------------- /** * Workspace for translating an individual SELECT statement (or sub-SELECT). */ protected class Blackboard implements SqlRexContext, SqlVisitor, InitializerContext { /** * Collection of {@link RelNode} objects which correspond to a SELECT * statement. */ public final SqlValidatorScope scope; private final Map nameToNodeMap; public RelNode root; private List inputs; private final Map mapCorrelateToRex = new HashMap<>(); private boolean isPatternVarRef = false; final List cursors = new ArrayList<>(); /** * List of IN and EXISTS nodes inside this * SELECT statement (but not inside sub-queries). */ private final Set subQueryList = new LinkedHashSet<>(); /** * Workspace for building aggregates. */ AggConverter agg; /** * When converting window aggregate, we need to know if the window is * guaranteed to be non-empty. */ SqlWindow window; /** * Project the groupby expressions out of the root of this sub-select. * Sub-queries can reference group by expressions projected from the * "right" to the sub-query. */ private final Map> mapRootRelToFieldProjection = new HashMap<>(); private final List columnMonotonicities = new ArrayList<>(); private final List systemFieldList = new ArrayList<>(); final boolean top; private final InitializerExpressionFactory initializerExpressionFactory = new NullInitializerExpressionFactory(); /** * Creates a Blackboard. * * @param scope Name-resolution scope for expressions validated * within this query. Can be null if this Blackboard is * for a leaf node, say * @param nameToNodeMap Map which translates the expression to map a * given parameter into, if translating expressions; * null otherwise * @param top Whether this is the root of the query */ protected Blackboard(SqlValidatorScope scope, Map nameToNodeMap, boolean top) { this.scope = scope; this.nameToNodeMap = nameToNodeMap; this.top = top; } public void setPatternVarRef(boolean isVarRef) { this.isPatternVarRef = isVarRef; } public RexNode register( RelNode rel, JoinRelType joinType) { return register(rel, joinType, null); } /** * Registers a relational expression. * * @param rel Relational expression * @param joinType Join type * @param leftKeys LHS of IN clause, or null for expressions * other than IN * @return Expression with which to refer to the row (or partial row) * coming from this relational expression's side of the join */ public RexNode register( RelNode rel, JoinRelType joinType, List leftKeys) { assert joinType != null; if (root == null) { assert leftKeys == null; setRoot(rel, false); return rexBuilder.makeRangeReference( root.getRowType(), 0, false); } final RexNode joinCond; final int origLeftInputCount = root.getRowType().getFieldCount(); if (leftKeys != null) { List newLeftInputExprs = new ArrayList<>(); for (int i = 0; i < origLeftInputCount; i++) { newLeftInputExprs.add(rexBuilder.makeInputRef(root, i)); } final List leftJoinKeys = new ArrayList<>(); for (RexNode leftKey : leftKeys) { int index = newLeftInputExprs.indexOf(leftKey); if (index < 0 || joinType == JoinRelType.LEFT) { index = newLeftInputExprs.size(); newLeftInputExprs.add(leftKey); } leftJoinKeys.add(index); } RelNode newLeftInput = relBuilder.push(root) .project(newLeftInputExprs) .build(); // maintain the group by mapping in the new LogicalProject if (mapRootRelToFieldProjection.containsKey(root)) { mapRootRelToFieldProjection.put( newLeftInput, mapRootRelToFieldProjection.get(root)); } setRoot(newLeftInput, false); // right fields appear after the LHS fields. final int rightOffset = root.getRowType().getFieldCount() - newLeftInput.getRowType().getFieldCount(); final List rightKeys = Util.range(rightOffset, rightOffset + leftKeys.size()); joinCond = RelOptUtil.createEquiJoinCondition(newLeftInput, leftJoinKeys, rel, rightKeys, rexBuilder); } else { joinCond = rexBuilder.makeLiteral(true); } int leftFieldCount = root.getRowType().getFieldCount(); final RelNode join = createJoin( this, root, rel, joinCond, joinType); setRoot(join, false); if (leftKeys != null && joinType == JoinRelType.LEFT) { final int leftKeyCount = leftKeys.size(); int rightFieldLength = rel.getRowType().getFieldCount(); assert leftKeyCount == rightFieldLength - 1; final int rexRangeRefLength = leftKeyCount + rightFieldLength; RelDataType returnType = typeFactory.createStructType( new AbstractList>() { public Map.Entry get( int index) { return join.getRowType().getFieldList() .get(origLeftInputCount + index); } public int size() { return rexRangeRefLength; } }); return rexBuilder.makeRangeReference( returnType, origLeftInputCount, false); } else { return rexBuilder.makeRangeReference( rel.getRowType(), leftFieldCount, joinType.generatesNullsOnRight()); } } /** * Sets a new root relational expression, as the translation process * backs its way further up the tree. * * @param root New root relational expression * @param leaf Whether the relational expression is a leaf, that is, * derived from an atomic relational expression such as a table * name in the from clause, or the projection on top of a * select-sub-query. In particular, relational expressions * derived from JOIN operators are not leaves, but set * expressions are. */ public void setRoot(RelNode root, boolean leaf) { setRoot( Collections.singletonList(root), root, root instanceof LogicalJoin); if (leaf) { leaves.add(root); } this.columnMonotonicities.clear(); } private void setRoot( List inputs, RelNode root, boolean hasSystemFields) { this.inputs = inputs; this.root = root; this.systemFieldList.clear(); if (hasSystemFields) { this.systemFieldList.addAll(getSystemFields()); } } /** * Notifies this Blackboard that the root just set using * {@link #setRoot(RelNode, boolean)} was derived using dataset * substitution. * *

The default implementation is not interested in such * notifications, and does nothing. * * @param datasetName Dataset name */ public void setDataset(String datasetName) { } void setRoot(List inputs) { setRoot(inputs, null, false); } /** * Returns an expression with which to reference a from-list item. * * @param qualified the alias of the from item * @return a {@link RexFieldAccess} or {@link RexRangeRef}, or null if * not found */ Pair> lookupExp(SqlQualified qualified) { if (nameToNodeMap != null && qualified.prefixLength == 1) { RexNode node = nameToNodeMap.get(qualified.identifier.names.get(0)); if (node == null) { throw new AssertionError("Unknown identifier '" + qualified.identifier + "' encountered while expanding expression"); } return Pair.of(node, null); } final SqlNameMatcher nameMatcher = scope.getValidator().getCatalogReader().nameMatcher(); final SqlValidatorScope.ResolvedImpl resolved = new SqlValidatorScope.ResolvedImpl(); scope.resolve(qualified.prefix(), nameMatcher, false, resolved); if (!(resolved.count() == 1)) { return null; } final SqlValidatorScope.Resolve resolve = resolved.only(); final RelDataType rowType = resolve.rowType(); // Found in current query's from list. Find which from item. // We assume that the order of the from clause items has been // preserved. final SqlValidatorScope ancestorScope = resolve.scope; boolean isParent = ancestorScope != scope; if ((inputs != null) && !isParent) { final LookupContext rels = new LookupContext(this, inputs, systemFieldList.size()); final RexNode node = lookup(resolve.path.steps().get(0).i, rels); if (node == null) { return null; } else { final Map fieldOffsets = new HashMap<>(); for (RelDataTypeField f : resolve.rowType().getFieldList()) { if (!fieldOffsets.containsKey(f.getName())) { fieldOffsets.put(f.getName(), f.getIndex()); } } final Map map = ImmutableMap.copyOf(fieldOffsets); return Pair.of(node, map); } } else { SqlValidatorScope corRefScope = validator.getCorRefScope(qualified.identifier, scope); boolean isCorRefAggScope = corRefScope instanceof AggregatingSelectScope; boolean isCorFieldInAgg = validator.isCorFieldInAggregator(qualified.identifier, scope); if (isCorRefAggScope && isCorFieldInAgg && !((AggregatingSelectScope) corRefScope).resolved.get().groupExprList.isEmpty()) { String errorMsg = "cannot handle the correlated field: " + qualified.identifier.toString() + " in aggregator with group key"; throw new UnsupportedOperationException(errorMsg); } // We're referencing a relational expression which has not been // converted yet. This occurs when from items are correlated, // e.g. "select from emp as emp join emp.getDepts() as dept". // Create a temporary expression. DeferredLookup lookup = new DeferredLookup(this, qualified.identifier.names.get(0)); final CorrelationId correlId = cluster.createCorrel(); mapCorrelToDeferred.put(correlId, lookup); if (resolve.path.steps().get(0).i < 0) { RelDataType outRowType = rowType; if (isCorRefAggScope && !isCorFieldInAgg) { AggregatingSelectScope aggScope = (AggregatingSelectScope) corRefScope; final RelDataTypeFactory.Builder builder = typeFactory.builder(); for (SqlNode group : aggScope.resolved.get().groupExprList) { String name = Util.last(((SqlIdentifier) group).names); int idx = rowType.getFieldNames().indexOf(name); Preconditions.checkArgument(idx >= 0); builder.add(name, rowType.getFieldList().get(idx).getType()); } outRowType = builder.build(); } return Pair.of(rexBuilder.makeCorrel(outRowType, correlId), null); } else { final RelDataTypeFactory.Builder builder = typeFactory.builder(); final ListScope ancestorScope1 = (ListScope) resolve.scope; final ImmutableMap.Builder fields = ImmutableMap.builder(); if (isCorRefAggScope && !isCorFieldInAgg) { AggregatingSelectScope aggScope = (AggregatingSelectScope) corRefScope; int i = 0; for (SqlNode group : aggScope.resolved.get().groupExprList) { SqlIdentifier id = (SqlIdentifier) group; String name = Util.last(id.names); builder.add(name, getFieldType(id, ancestorScope1)); if (id.names.equals(qualified.identifier.names)) { fields.put(name, i); } ++i; } } else { int i = 0; int offset = 0; for (SqlValidatorNamespace c : ancestorScope1.getChildren()) { builder.addAll(c.getRowType().getFieldList()); if (i == resolve.path.steps().get(0).i) { for (RelDataTypeField field : c.getRowType().getFieldList()) { fields.put(field.getName(), field.getIndex() + offset); } } ++i; offset += c.getRowType().getFieldCount(); } } final RexNode c = rexBuilder.makeCorrel(builder.uniquify().build(), correlId); return Pair.of(c, fields.build()); } } } private RelDataType getFieldType( SqlIdentifier id, ListScope ancestorScope) { for (SqlValidatorNamespace ns : ancestorScope.getChildren()) { String prefix = id.names.get(0); String fieldName = Util.last(id.names); String alias = SqlValidatorUtil.getAlias(ns.getEnclosingNode(), -1); if (alias == null) { throw new IllegalArgumentException( "can not get alias: " + id.toString()); } if (alias.equals(prefix)) { int idx = ns.getRowType().getFieldNames().indexOf(fieldName); Preconditions.checkArgument(idx >= 0); return ns.getRowType().getFieldList().get(idx).getType(); } } throw new IllegalArgumentException( id.toString() + " can not be found in any namespaces"); } /** * Creates an expression with which to reference the expression whose * offset in its from-list is {@code offset}. */ RexNode lookup( int offset, LookupContext lookupContext) { Pair pair = lookupContext.findRel(offset); return rexBuilder.makeRangeReference( pair.left.getRowType(), pair.right, false); } RelDataTypeField getRootField(RexInputRef inputRef) { if (inputs == null) { return null; } int fieldOffset = inputRef.getIndex(); for (RelNode input : inputs) { RelDataType rowType = input.getRowType(); if (rowType == null) { // TODO: remove this once leastRestrictive // is correctly implemented return null; } if (fieldOffset < rowType.getFieldCount()) { return rowType.getFieldList().get(fieldOffset); } fieldOffset -= rowType.getFieldCount(); } throw new AssertionError(); } public void flatten( List rels, int systemFieldCount, int[] start, List> relOffsetList) { for (RelNode rel : rels) { if (leaves.contains(rel) || rel instanceof LogicalMatch) { relOffsetList.add( Pair.of(rel, start[0])); start[0] += rel.getRowType().getFieldCount(); } else { if (rel instanceof LogicalJoin || rel instanceof LogicalAggregate) { start[0] += systemFieldCount; } flatten( rel.getInputs(), systemFieldCount, start, relOffsetList); } } } void registerSubQuery(SqlNode node, RelOptUtil.Logic logic) { for (SubQuery subQuery : subQueryList) { if (node.equalsDeep(subQuery.node, Litmus.IGNORE)) { return; } } subQueryList.add(new SubQuery(node, logic)); } SubQuery getSubQuery(SqlNode expr) { for (SubQuery subQuery : subQueryList) { if (expr.equalsDeep(subQuery.node, Litmus.IGNORE)) { return subQuery; } } return null; } ImmutableList retrieveCursors() { try { return ImmutableList.copyOf(cursors); } finally { cursors.clear(); } } public RexNode convertExpression(SqlNode expr) { // If we're in aggregation mode and this is an expression in the // GROUP BY clause, return a reference to the field. if (agg != null) { final SqlNode expandedGroupExpr = validator.expand(expr, scope); final int ref = agg.lookupGroupExpr(expandedGroupExpr); if (ref >= 0) { return rexBuilder.makeInputRef(root, ref); } if (expr instanceof SqlCall) { final RexNode rex = agg.lookupAggregates((SqlCall) expr); if (rex != null) { return rex; } } } // Allow the derived class chance to override the standard // behavior for special kinds of expressions. RexNode rex = convertExtendedExpression(expr, this); if (rex != null) { return rex; } // Sub-queries and OVER expressions are not like ordinary // expressions. final SqlKind kind = expr.getKind(); final SubQuery subQuery; if (!config.isExpand()) { final SqlCall call; final SqlNode query; final RelRoot root; switch (kind) { case IN: case NOT_IN: case SOME: case ALL: call = (SqlCall) expr; query = call.operand(1); if (!(query instanceof SqlNodeList)) { root = convertQueryRecursive(query, false, null); final SqlNode operand = call.operand(0); List nodes; switch (operand.getKind()) { case ROW: nodes = ((SqlCall) operand).getOperandList(); break; default: nodes = ImmutableList.of(operand); } final ImmutableList.Builder builder = ImmutableList.builder(); for (SqlNode node : nodes) { builder.add(convertExpression(node)); } final ImmutableList list = builder.build(); switch (kind) { case IN: return RexSubQuery.in(root.rel, list); case NOT_IN: return rexBuilder.makeCall(SqlStdOperatorTable.NOT, RexSubQuery.in(root.rel, list)); case SOME: return RexSubQuery.some(root.rel, list, (SqlQuantifyOperator) call.getOperator()); case ALL: return rexBuilder.makeCall(SqlStdOperatorTable.NOT, RexSubQuery.some(root.rel, list, negate((SqlQuantifyOperator) call.getOperator()))); default: throw new AssertionError(kind); } } break; case EXISTS: call = (SqlCall) expr; query = Iterables.getOnlyElement(call.getOperandList()); root = convertQueryRecursive(query, false, null); RelNode rel = root.rel; while (rel instanceof Project || rel instanceof Sort && ((Sort) rel).fetch == null && ((Sort) rel).offset == null) { rel = ((SingleRel) rel).getInput(); } return RexSubQuery.exists(rel); case SCALAR_QUERY: call = (SqlCall) expr; query = Iterables.getOnlyElement(call.getOperandList()); root = convertQueryRecursive(query, false, null); return RexSubQuery.scalar(root.rel); } } switch (kind) { case SOME: case ALL: if (config.isExpand()) { throw new RuntimeException(kind + " is only supported if expand = false"); } // fall through case CURSOR: case IN: case NOT_IN: subQuery = Objects.requireNonNull(getSubQuery(expr)); rex = Objects.requireNonNull(subQuery.expr); return StandardConvertletTable.castToValidatedType(expr, rex, validator, rexBuilder); case SELECT: case EXISTS: case SCALAR_QUERY: subQuery = getSubQuery(expr); assert subQuery != null; rex = subQuery.expr; assert rex != null : "rex != null"; if (((kind == SqlKind.SCALAR_QUERY) || (kind == SqlKind.EXISTS)) && isConvertedSubq(rex)) { // scalar sub-query or EXISTS has been converted to a // constant return rex; } // The indicator column is the last field of the sub-query. RexNode fieldAccess = rexBuilder.makeFieldAccess( rex, rex.getType().getFieldCount() - 1); // The indicator column will be nullable if it comes from // the null-generating side of the join. For EXISTS, add an // "IS TRUE" check so that the result is "BOOLEAN NOT NULL". if (fieldAccess.getType().isNullable() && kind == SqlKind.EXISTS) { fieldAccess = rexBuilder.makeCall( SqlStdOperatorTable.IS_NOT_NULL, fieldAccess); } return fieldAccess; case OVER: return convertOver(this, expr); default: // fall through } // Apply standard conversions. rex = expr.accept(this); return Objects.requireNonNull(rex); } /** * Converts an item in an ORDER BY clause inside a window (OVER) clause, * extracting DESC, NULLS LAST and NULLS FIRST flags first. */ public RexFieldCollation convertSortExpression(SqlNode expr, RelFieldCollation.Direction direction, RelFieldCollation.NullDirection nullDirection) { switch (expr.getKind()) { case DESCENDING: return convertSortExpression(((SqlCall) expr).operand(0), RelFieldCollation.Direction.DESCENDING, nullDirection); case NULLS_LAST: return convertSortExpression(((SqlCall) expr).operand(0), direction, RelFieldCollation.NullDirection.LAST); case NULLS_FIRST: return convertSortExpression(((SqlCall) expr).operand(0), direction, RelFieldCollation.NullDirection.FIRST); default: final Set flags = EnumSet.noneOf(SqlKind.class); switch (direction) { case DESCENDING: flags.add(SqlKind.DESCENDING); } switch (nullDirection) { case UNSPECIFIED: final RelFieldCollation.NullDirection nullDefaultDirection = validator.getDefaultNullCollation().last(desc(direction)) ? RelFieldCollation.NullDirection.LAST : RelFieldCollation.NullDirection.FIRST; if (nullDefaultDirection != direction.defaultNullDirection()) { SqlKind nullDirectionSqlKind = validator.getDefaultNullCollation().last(desc(direction)) ? SqlKind.NULLS_LAST : SqlKind.NULLS_FIRST; flags.add(nullDirectionSqlKind); } break; case FIRST: flags.add(SqlKind.NULLS_FIRST); break; case LAST: flags.add(SqlKind.NULLS_LAST); break; } return new RexFieldCollation(convertExpression(expr), flags); } } /** * Determines whether a RexNode corresponds to a sub-query that's been * converted to a constant. * * @param rex the expression to be examined * @return true if the expression is a dynamic parameter, a literal, or * a literal that is being cast */ private boolean isConvertedSubq(RexNode rex) { if ((rex instanceof RexLiteral) || (rex instanceof RexDynamicParam)) { return true; } if (rex instanceof RexCall) { RexCall call = (RexCall) rex; if (call.getOperator() == SqlStdOperatorTable.CAST) { RexNode operand = call.getOperands().get(0); if (operand instanceof RexLiteral) { return true; } } } return false; } public int getGroupCount() { if (agg != null) { return agg.groupExprs.size(); } if (window != null) { return window.isAlwaysNonEmpty() ? 1 : 0; } return -1; } public RexBuilder getRexBuilder() { return rexBuilder; } public RexRangeRef getSubQueryExpr(SqlCall call) { final SubQuery subQuery = getSubQuery(call); assert subQuery != null; return (RexRangeRef) subQuery.expr; } public RelDataTypeFactory getTypeFactory() { return typeFactory; } public InitializerExpressionFactory getInitializerExpressionFactory() { return initializerExpressionFactory; } public SqlValidator getValidator() { return validator; } public RexNode convertLiteral(SqlLiteral literal) { return exprConverter.convertLiteral(this, literal); } public RexNode convertInterval(SqlIntervalQualifier intervalQualifier) { return exprConverter.convertInterval(this, intervalQualifier); } public RexNode visit(SqlLiteral literal) { return exprConverter.convertLiteral(this, literal); } public RexNode visit(SqlCall call) { if (agg != null) { final SqlOperator op = call.getOperator(); if (window == null && (op.isAggregator() || op.getKind() == SqlKind.FILTER)) { return agg.lookupAggregates(call); } } return exprConverter.convertCall(this, new SqlCallBinding(validator, scope, call).permutedCall()); } public RexNode visit(SqlNodeList nodeList) { throw new UnsupportedOperationException(); } public RexNode visit(SqlIdentifier id) { return convertIdentifier(this, id); } public RexNode visit(SqlDataTypeSpec type) { throw new UnsupportedOperationException(); } public RexNode visit(SqlDynamicParam param) { return convertDynamicParam(param); } public RexNode visit(SqlIntervalQualifier intervalQualifier) { return convertInterval(intervalQualifier); } public List getColumnMonotonicities() { return columnMonotonicities; } } private SqlQuantifyOperator negate(SqlQuantifyOperator operator) { assert operator.kind == SqlKind.ALL; return SqlStdOperatorTable.some(operator.comparisonKind.negateNullSafe()); } /** Deferred lookup. */ private static class DeferredLookup { Blackboard bb; String originalRelName; DeferredLookup( Blackboard bb, String originalRelName) { this.bb = bb; this.originalRelName = originalRelName; } public RexFieldAccess getFieldAccess(CorrelationId name) { return (RexFieldAccess) bb.mapCorrelateToRex.get(name); } public String getOriginalRelName() { return originalRelName; } } /** * A default implementation of SubQueryConverter that does no conversion. */ private class NoOpSubQueryConverter implements SubQueryConverter { public boolean canConvertSubQuery() { return false; } public RexNode convertSubQuery( SqlCall subQuery, SqlToRelConverter parentConverter, boolean isExists, boolean isExplain) { throw new IllegalArgumentException(); } } /** * Converts expressions to aggregates. * *

Consider the expression * *

* {@code SELECT deptno, SUM(2 * sal) FROM emp GROUP BY deptno} *
* *

Then: * *

    *
  • groupExprs = {SqlIdentifier(deptno)}
  • *
  • convertedInputExprs = {RexInputRef(deptno), 2 * * RefInputRef(sal)}
  • *
  • inputRefs = {RefInputRef(#0), RexInputRef(#1)}
  • *
  • aggCalls = {AggCall(SUM, {1})}
  • *
*/ protected class AggConverter implements SqlVisitor { private final Blackboard bb; public final AggregatingSelectScope aggregatingSelectScope; private final Map nameMap = new HashMap<>(); /** * The group-by expressions, in {@link SqlNode} format. */ private final SqlNodeList groupExprs = new SqlNodeList(SqlParserPos.ZERO); /** * The auxiliary group-by expressions. */ private final Map> auxiliaryGroupExprs = new HashMap<>(); /** * Input expressions for the group columns and aggregates, in * {@link RexNode} format. The first elements of the list correspond to the * elements in {@link #groupExprs}; the remaining elements are for * aggregates. The right field of each pair is the name of the expression, * where the expressions are simple mappings to input fields. */ private final List> convertedInputExprs = new ArrayList<>(); /** Expressions to be evaluated as rows are being placed into the * aggregate's hash table. This is when group functions such as TUMBLE * cause rows to be expanded. */ private final List aggCalls = new ArrayList<>(); private final Map aggMapping = new HashMap<>(); private final Map aggCallMapping = new HashMap<>(); /** Are we directly inside a windowed aggregate? */ private boolean inOver = false; /** * Creates an AggConverter. * *

The select parameter provides enough context to name * aggregate calls which are top-level select list items. * * @param bb Blackboard * @param select Query being translated; provides context to give */ public AggConverter(Blackboard bb, SqlSelect select) { this.bb = bb; this.aggregatingSelectScope = (AggregatingSelectScope) bb.getValidator().getSelectScope(select); // Collect all expressions used in the select list so that aggregate // calls can be named correctly. final SqlNodeList selectList = select.getSelectList(); for (int i = 0; i < selectList.size(); i++) { SqlNode selectItem = selectList.get(i); String name = null; if (SqlUtil.isCallTo( selectItem, SqlStdOperatorTable.AS)) { final SqlCall call = (SqlCall) selectItem; selectItem = call.operand(0); name = call.operand(1).toString(); } if (name == null) { name = validator.deriveAlias(selectItem, i); } nameMap.put(selectItem.toString(), name); } } public int addGroupExpr(SqlNode expr) { int ref = lookupGroupExpr(expr); if (ref >= 0) { return ref; } final int index = groupExprs.size(); groupExprs.add(expr); String name = nameMap.get(expr.toString()); RexNode convExpr = bb.convertExpression(expr); addExpr(convExpr, name); if (expr instanceof SqlCall) { SqlCall call = (SqlCall) expr; for (Pair p : SqlStdOperatorTable.convertGroupToAuxiliaryCalls(call)) { addAuxiliaryGroupExpr(p.left, index, p.right); } } return index; } void addAuxiliaryGroupExpr(SqlNode node, int index, AuxiliaryConverter converter) { for (SqlNode node2 : auxiliaryGroupExprs.keySet()) { if (node2.equalsDeep(node, Litmus.IGNORE)) { return; } } auxiliaryGroupExprs.put(node, Ord.of(index, converter)); } /** * Adds an expression, deducing an appropriate name if possible. * * @param expr Expression * @param name Suggested name */ private void addExpr(RexNode expr, String name) { if ((name == null) && (expr instanceof RexInputRef)) { final int i = ((RexInputRef) expr).getIndex(); name = bb.root.getRowType().getFieldList().get(i).getName(); } if (Pair.right(convertedInputExprs).contains(name)) { // In case like 'SELECT ... GROUP BY x, y, x', don't add // name 'x' twice. name = null; } convertedInputExprs.add(Pair.of(expr, name)); } public Void visit(SqlIdentifier id) { return null; } public Void visit(SqlNodeList nodeList) { for (int i = 0; i < nodeList.size(); i++) { nodeList.get(i).accept(this); } return null; } public Void visit(SqlLiteral lit) { return null; } public Void visit(SqlDataTypeSpec type) { return null; } public Void visit(SqlDynamicParam param) { return null; } public Void visit(SqlIntervalQualifier intervalQualifier) { return null; } public Void visit(SqlCall call) { switch (call.getKind()) { case FILTER: translateAgg((SqlCall) call.operand(0), call.operand(1), call); return null; case SELECT: // rchen 2006-10-17: // for now do not detect aggregates in sub-queries. return null; } final boolean prevInOver = inOver; // Ignore window aggregates and ranking functions (associated with OVER // operator). However, do not ignore nested window aggregates. if (call.getOperator().getKind() == SqlKind.OVER) { // Track aggregate nesting levels only within an OVER operator. List operandList = call.getOperandList(); assert operandList.size() == 2; // Ignore the top level window aggregates and ranking functions // positioned as the first operand of a OVER operator inOver = true; operandList.get(0).accept(this); // Normal translation for the second operand of a OVER operator inOver = false; operandList.get(1).accept(this); return null; } // Do not translate the top level window aggregate. Only do so for // nested aggregates, if present if (call.getOperator().isAggregator()) { if (inOver) { // Add the parent aggregate level before visiting its children inOver = false; } else { // We're beyond the one ignored level translateAgg(call, null, call); return null; } } for (SqlNode operand : call.getOperandList()) { // Operands are occasionally null, e.g. switched CASE arg 0. if (operand != null) { operand.accept(this); } } // Remove the parent aggregate level after visiting its children inOver = prevInOver; return null; } private void translateAgg(SqlCall call, SqlNode filter, SqlCall outerCall) { assert bb.agg == this; final List args = new ArrayList<>(); int filterArg = -1; final List argTypes = call.getOperator() instanceof SqlCountAggFunction ? new ArrayList(call.getOperandList().size()) : null; try { // switch out of agg mode bb.agg = null; for (SqlNode operand : call.getOperandList()) { // special case for COUNT(*): delete the * if (operand instanceof SqlIdentifier) { SqlIdentifier id = (SqlIdentifier) operand; if (id.isStar()) { assert call.operandCount() == 1; assert args.isEmpty(); break; } } RexNode convertedExpr = bb.convertExpression(operand); assert convertedExpr != null; if (argTypes != null) { argTypes.add(convertedExpr.getType()); } args.add(lookupOrCreateGroupExpr(convertedExpr)); } if (filter != null) { RexNode convertedExpr = bb.convertExpression(filter); assert convertedExpr != null; if (convertedExpr.getType().isNullable()) { convertedExpr = rexBuilder.makeCall(SqlStdOperatorTable.IS_TRUE, convertedExpr); } filterArg = lookupOrCreateGroupExpr(convertedExpr); } } finally { // switch back into agg mode bb.agg = this; } SqlAggFunction aggFunction = (SqlAggFunction) call.getOperator(); final RelDataType type = validator.deriveType(bb.scope, call); boolean distinct = false; SqlLiteral quantifier = call.getFunctionQuantifier(); if ((null != quantifier) && (quantifier.getValue() == SqlSelectKeyword.DISTINCT)) { distinct = true; } boolean approximate = false; if (aggFunction == SqlStdOperatorTable.APPROX_COUNT_DISTINCT) { aggFunction = SqlStdOperatorTable.COUNT; distinct = true; approximate = true; } final AggregateCall aggCall = AggregateCall.create( aggFunction, distinct, approximate, args, filterArg, type, nameMap.get(outerCall.toString())); final AggregatingSelectScope.Resolved r = aggregatingSelectScope.resolved.get(); RexNode rex = rexBuilder.addAggCall( aggCall, groupExprs.size(), false, aggCalls, aggCallMapping, argTypes); aggMapping.put(outerCall, rex); } private int lookupOrCreateGroupExpr(RexNode expr) { int index = 0; for (RexNode convertedInputExpr : Pair.left(convertedInputExprs)) { if (expr.toString().equals(convertedInputExpr.toString())) { return index; } ++index; } // not found -- add it addExpr(expr, null); return index; } /** * If an expression is structurally identical to one of the group-by * expressions, returns a reference to the expression, otherwise returns * null. */ public int lookupGroupExpr(SqlNode expr) { for (int i = 0; i < groupExprs.size(); i++) { SqlNode groupExpr = groupExprs.get(i); if (expr.equalsDeep(groupExpr, Litmus.IGNORE)) { return i; } } return -1; } public RexNode lookupAggregates(SqlCall call) { // assert call.getOperator().isAggregator(); assert bb.agg == this; for (Map.Entry> e : auxiliaryGroupExprs.entrySet()) { if (call.equalsDeep(e.getKey(), Litmus.IGNORE)) { AuxiliaryConverter converter = e.getValue().e; final int groupOrdinal = e.getValue().i; return converter.convert(rexBuilder, convertedInputExprs.get(groupOrdinal).left, rexBuilder.makeInputRef(bb.root, groupOrdinal)); } } return aggMapping.get(call); } public List> getPreExprs() { return convertedInputExprs; } public List getAggCalls() { return aggCalls; } public RelDataTypeFactory getTypeFactory() { return typeFactory; } } /** * Context to find a relational expression to a field offset. */ private static class LookupContext { private final List> relOffsetList = new ArrayList<>(); /** * Creates a LookupContext with multiple input relational expressions. * * @param bb Context for translating this sub-query * @param rels Relational expressions * @param systemFieldCount Number of system fields */ LookupContext(Blackboard bb, List rels, int systemFieldCount) { bb.flatten(rels, systemFieldCount, new int[]{0}, relOffsetList); } /** * Returns the relational expression with a given offset, and the * ordinal in the combined row of its first field. * *

For example, in {@code Emp JOIN Dept}, findRel(1) returns the * relational expression for {@code Dept} and offset 6 (because * {@code Emp} has 6 fields, therefore the first field of {@code Dept} * is field 6. * * @param offset Offset of relational expression in FROM clause * @return Relational expression and the ordinal of its first field */ Pair findRel(int offset) { return relOffsetList.get(offset); } } /** * Shuttle which walks over a tree of {@link RexNode}s and applies 'over' to * all agg functions. * *

This is necessary because the returned expression is not necessarily a * call to an agg function. For example, * *

AVG(x)
* *

becomes * *

SUM(x) / COUNT(x)
* *

Any aggregate functions are converted to calls to the internal * $Histogram aggregation function and accessors such as * $HistogramMin; for example, * *

MIN(x), MAX(x)
* *

are converted to * *

$HistogramMin($Histogram(x)), * $HistogramMax($Histogram(x))
* *

Common sub-expression elimination will ensure that only one histogram is * computed. */ private class HistogramShuttle extends RexShuttle { /** * Whether to convert calls to MIN(x) to HISTOGRAM_MIN(HISTOGRAM(x)). * Histograms allow rolling computation, but require more space. */ static final boolean ENABLE_HISTOGRAM_AGG = false; private final List partitionKeys; private final ImmutableList orderKeys; private final RexWindowBound lowerBound; private final RexWindowBound upperBound; private final SqlWindow window; private final boolean distinct; HistogramShuttle( List partitionKeys, ImmutableList orderKeys, RexWindowBound lowerBound, RexWindowBound upperBound, SqlWindow window, boolean distinct) { this.partitionKeys = partitionKeys; this.orderKeys = orderKeys; this.lowerBound = lowerBound; this.upperBound = upperBound; this.window = window; this.distinct = distinct; } public RexNode visitCall(RexCall call) { final SqlOperator op = call.getOperator(); if (!(op instanceof SqlAggFunction)) { return super.visitCall(call); } final SqlAggFunction aggOp = (SqlAggFunction) op; final RelDataType type = call.getType(); List exprs = call.getOperands(); SqlFunction histogramOp = !ENABLE_HISTOGRAM_AGG ? null : getHistogramOp(aggOp); if (histogramOp != null) { final RelDataType histogramType = computeHistogramType(type); // For DECIMAL, since it's already represented as a bigint we // want to do a reinterpretCast instead of a cast to avoid // losing any precision. boolean reinterpretCast = type.getSqlTypeName() == SqlTypeName.DECIMAL; // Replace original expression with CAST of not one // of the supported types if (histogramType != type) { exprs = new ArrayList<>(exprs); exprs.set( 0, reinterpretCast ? rexBuilder.makeReinterpretCast(histogramType, exprs.get(0), rexBuilder.makeLiteral(false)) : rexBuilder.makeCast(histogramType, exprs.get(0))); } RexCallBinding bind = new RexCallBinding( rexBuilder.getTypeFactory(), SqlStdOperatorTable.HISTOGRAM_AGG, exprs, ImmutableList.of()); RexNode over = rexBuilder.makeOver( SqlStdOperatorTable.HISTOGRAM_AGG .inferReturnType(bind), SqlStdOperatorTable.HISTOGRAM_AGG, exprs, partitionKeys, orderKeys, lowerBound, upperBound, window.isRows(), window.isAllowPartial(), false, distinct); RexNode histogramCall = rexBuilder.makeCall( histogramType, histogramOp, ImmutableList.of(over)); // If needed, post Cast result back to original // type. if (histogramType != type) { if (reinterpretCast) { histogramCall = rexBuilder.makeReinterpretCast( type, histogramCall, rexBuilder.makeLiteral(false)); } else { histogramCall = rexBuilder.makeCast(type, histogramCall); } } return histogramCall; } else { boolean needSum0 = aggOp == SqlStdOperatorTable.SUM && type.isNullable(); SqlAggFunction aggOpToUse = needSum0 ? SqlStdOperatorTable.SUM0 : aggOp; return rexBuilder.makeOver( type, aggOpToUse, exprs, partitionKeys, orderKeys, lowerBound, upperBound, window.isRows(), window.isAllowPartial(), needSum0, distinct); } } /** * Returns the histogram operator corresponding to a given aggregate * function. * *

For example, getHistogramOp *({@link SqlStdOperatorTable#MIN}} returns * {@link SqlStdOperatorTable#HISTOGRAM_MIN}. * * @param aggFunction An aggregate function * @return Its histogram function, or null */ SqlFunction getHistogramOp(SqlAggFunction aggFunction) { if (aggFunction == SqlStdOperatorTable.MIN) { return SqlStdOperatorTable.HISTOGRAM_MIN; } else if (aggFunction == SqlStdOperatorTable.MAX) { return SqlStdOperatorTable.HISTOGRAM_MAX; } else if (aggFunction == SqlStdOperatorTable.FIRST_VALUE) { return SqlStdOperatorTable.HISTOGRAM_FIRST_VALUE; } else if (aggFunction == SqlStdOperatorTable.LAST_VALUE) { return SqlStdOperatorTable.HISTOGRAM_LAST_VALUE; } else { return null; } } /** * Returns the type for a histogram function. It is either the actual * type or an an approximation to it. */ private RelDataType computeHistogramType(RelDataType type) { if (SqlTypeUtil.isExactNumeric(type) && type.getSqlTypeName() != SqlTypeName.BIGINT) { return typeFactory.createSqlType(SqlTypeName.BIGINT); } else if (SqlTypeUtil.isApproximateNumeric(type) && type.getSqlTypeName() != SqlTypeName.DOUBLE) { return typeFactory.createSqlType(SqlTypeName.DOUBLE); } else { return type; } } } /** A sub-query, whether it needs to be translated using 2- or 3-valued * logic. */ private static class SubQuery { final SqlNode node; final RelOptUtil.Logic logic; RexNode expr; private SubQuery(SqlNode node, RelOptUtil.Logic logic) { this.node = node; this.logic = logic; } } /** * Visitor that collects all aggregate functions in a {@link SqlNode} tree. */ private static class AggregateFinder extends SqlBasicVisitor { final SqlNodeList list = new SqlNodeList(SqlParserPos.ZERO); final SqlNodeList filterList = new SqlNodeList(SqlParserPos.ZERO); @Override public Void visit(SqlCall call) { // ignore window aggregates and ranking functions (associated with OVER operator) if (call.getOperator().getKind() == SqlKind.OVER) { return null; } if (call.getOperator().getKind() == SqlKind.FILTER) { // the WHERE in a FILTER must be tracked too so we can call replaceSubQueries on it. // see https://issues.apache.org/jira/browse/CALCITE-1910 final SqlNode aggCall = call.getOperandList().get(0); final SqlNode whereCall = call.getOperandList().get(1); list.add(aggCall); filterList.add(whereCall); return null; } if (call.getOperator().isAggregator()) { list.add(call); return null; } // Don't traverse into sub-queries, even if they contain aggregate // functions. if (call instanceof SqlSelect) { return null; } return call.getOperator().acceptCall(this, call); } } /** Use of a row as a correlating variable by a given relational * expression. */ private static class CorrelationUse { private final CorrelationId id; private final ImmutableBitSet requiredColumns; /** The relational expression that uses the variable. */ private final RelNode r; CorrelationUse(CorrelationId id, ImmutableBitSet requiredColumns, RelNode r) { this.id = id; this.requiredColumns = requiredColumns; this.r = r; } } /** Creates a builder for a {@link Config}. */ public static ConfigBuilder configBuilder() { return new ConfigBuilder(); } /** * Interface to define the configuration for a SqlToRelConverter. * Provides methods to set each configuration option. * * @see ConfigBuilder * @see SqlToRelConverter#configBuilder() */ public interface Config { /** Default configuration. */ Config DEFAULT = configBuilder().build(); /** Returns the {@code convertTableAccess} option. Controls whether table * access references are converted to physical rels immediately. The * optimizer doesn't like leaf rels to have {@link Convention#NONE}. * However, if we are doing further conversion passes (e.g. * {@link RelStructuredTypeFlattener}), then we may need to defer * conversion. */ boolean isConvertTableAccess(); /** Returns the {@code decorrelationEnabled} option. Controls whether to * disable sub-query decorrelation when needed. e.g. if outer joins are not * supported. */ boolean isDecorrelationEnabled(); /** Returns the {@code trimUnusedFields} option. Controls whether to trim * unused fields as part of the conversion process. */ boolean isTrimUnusedFields(); /** Returns the {@code createValuesRel} option. Controls whether instances * of {@link org.apache.calcite.rel.logical.LogicalValues} are generated. * These may not be supported by all physical implementations. */ boolean isCreateValuesRel(); /** Returns the {@code explain} option. Describes whether the current * statement is part of an EXPLAIN PLAN statement. */ boolean isExplain(); /** Returns the {@code expand} option. Controls whether to expand * sub-queries. If false, each sub-query becomes a * {@link org.apache.calcite.rex.RexSubQuery}. */ boolean isExpand(); /** Returns the {@code inSubQueryThreshold} option, * default {@link #DEFAULT_IN_SUB_QUERY_THRESHOLD}. Controls the list size * threshold under which {@link #convertInToOr} is used. Lists of this size * or greater will instead be converted to use a join against an inline * table ({@link org.apache.calcite.rel.logical.LogicalValues}) rather than * a predicate. A threshold of 0 forces usage of an inline table in all * cases; a threshold of {@link Integer#MAX_VALUE} forces usage of OR in all * cases. */ int getInSubQueryThreshold(); /** Returns the factory to create {@link RelBuilder}, never null. Default is * {@link RelFactories#LOGICAL_BUILDER}. */ RelBuilderFactory getRelBuilderFactory(); } /** Builder for a {@link Config}. */ public static class ConfigBuilder { private boolean convertTableAccess = true; private boolean decorrelationEnabled = true; private boolean trimUnusedFields = false; private boolean createValuesRel = true; private boolean explain; private boolean expand = true; private int inSubQueryThreshold = DEFAULT_IN_SUB_QUERY_THRESHOLD; private RelBuilderFactory relBuilderFactory = RelFactories.LOGICAL_BUILDER; private ConfigBuilder() {} /** Sets configuration identical to a given {@link Config}. */ public ConfigBuilder withConfig(Config config) { this.convertTableAccess = config.isConvertTableAccess(); this.decorrelationEnabled = config.isDecorrelationEnabled(); this.trimUnusedFields = config.isTrimUnusedFields(); this.createValuesRel = config.isCreateValuesRel(); this.explain = config.isExplain(); this.expand = config.isExpand(); this.inSubQueryThreshold = config.getInSubQueryThreshold(); this.relBuilderFactory = config.getRelBuilderFactory(); return this; } public ConfigBuilder withConvertTableAccess(boolean convertTableAccess) { this.convertTableAccess = convertTableAccess; return this; } public ConfigBuilder withDecorrelationEnabled(boolean enabled) { this.decorrelationEnabled = enabled; return this; } public ConfigBuilder withTrimUnusedFields(boolean trimUnusedFields) { this.trimUnusedFields = trimUnusedFields; return this; } public ConfigBuilder withCreateValuesRel(boolean createValuesRel) { this.createValuesRel = createValuesRel; return this; } public ConfigBuilder withExplain(boolean explain) { this.explain = explain; return this; } public ConfigBuilder withExpand(boolean expand) { this.expand = expand; return this; } @Deprecated // to be removed before 2.0 public ConfigBuilder withInSubqueryThreshold(int inSubQueryThreshold) { return withInSubQueryThreshold(inSubQueryThreshold); } public ConfigBuilder withInSubQueryThreshold(int inSubQueryThreshold) { this.inSubQueryThreshold = inSubQueryThreshold; return this; } public ConfigBuilder withRelBuilderFactory( RelBuilderFactory relBuilderFactory) { this.relBuilderFactory = relBuilderFactory; return this; } /** Builds a {@link Config}. */ public Config build() { return new ConfigImpl(convertTableAccess, decorrelationEnabled, trimUnusedFields, createValuesRel, explain, expand, inSubQueryThreshold, relBuilderFactory); } } /** Implementation of {@link Config}. * Called by builder; all values are in private final fields. */ private static class ConfigImpl implements Config { private final boolean convertTableAccess; private final boolean decorrelationEnabled; private final boolean trimUnusedFields; private final boolean createValuesRel; private final boolean explain; private final boolean expand; private final int inSubQueryThreshold; private final RelBuilderFactory relBuilderFactory; private ConfigImpl(boolean convertTableAccess, boolean decorrelationEnabled, boolean trimUnusedFields, boolean createValuesRel, boolean explain, boolean expand, int inSubQueryThreshold, RelBuilderFactory relBuilderFactory) { this.convertTableAccess = convertTableAccess; this.decorrelationEnabled = decorrelationEnabled; this.trimUnusedFields = trimUnusedFields; this.createValuesRel = createValuesRel; this.explain = explain; this.expand = expand; this.inSubQueryThreshold = inSubQueryThreshold; this.relBuilderFactory = relBuilderFactory; } public boolean isConvertTableAccess() { return convertTableAccess; } public boolean isDecorrelationEnabled() { return decorrelationEnabled; } public boolean isTrimUnusedFields() { return trimUnusedFields; } public boolean isCreateValuesRel() { return createValuesRel; } public boolean isExplain() { return explain; } public boolean isExpand() { return expand; } public int getInSubQueryThreshold() { return inSubQueryThreshold; } public RelBuilderFactory getRelBuilderFactory() { return relBuilderFactory; } } } // End SqlToRelConverter.java