org.apache.lucene.codecs.lucene70.Lucene70DocValuesFormat Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.codecs.lucene70;
import java.io.IOException;
import org.apache.lucene.codecs.DocValuesConsumer;
import org.apache.lucene.codecs.DocValuesFormat;
import org.apache.lucene.codecs.DocValuesProducer;
import org.apache.lucene.index.DocValuesType;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.SegmentReadState;
import org.apache.lucene.index.SegmentWriteState;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.util.SmallFloat;
import org.apache.lucene.util.packed.DirectWriter;
/**
* Lucene 7.0 DocValues format.
*
* Documents that have a value for the field are encoded in a way that it is always possible to
* know the ordinal of the current document in the set of documents that have a value. For instance,
* say the set of documents that have a value for the field is {1, 5, 6, 11}. When the
* iterator is on 6, it knows that this is the 3rd item of the set. This way, values can
* be stored densely and accessed based on their index at search time. If all documents in a segment
* have a value for the field, the index is the same as the doc ID, so this case is encoded implicitly
* and is very fast at query time. On the other hand if some documents are missing a value for the
* field then the set of documents that have a value is encoded into blocks. All doc IDs that share
* the same upper 16 bits are encoded into the same block with the following strategies:
*
* - SPARSE: This strategy is used when a block contains at most 4095 documents. The lower 16
* bits of doc IDs are stored as {@link DataOutput#writeShort(short) shorts} while the upper
* 16 bits are given by the block ID.
*
- DENSE: This strategy is used when a block contains between 4096 and 65535 documents. The
* lower bits of doc IDs are stored in a bit set. Advancing is performed using
* {@link Long#numberOfTrailingZeros(long) ntz} operations while the index is computed by
* accumulating the {@link Long#bitCount(long) bit counts} of the visited longs.
*
- ALL: This strategy is used when a block contains exactly 65536 documents, meaning that
* the block is full. In that case doc IDs do not need to be stored explicitly. This is
* typically faster than both SPARSE and DENSE which is a reason why it is preferable to have
* all documents that have a value for a field using contiguous doc IDs, for instance by
* using {@link IndexWriterConfig#setIndexSort(org.apache.lucene.search.Sort) index sorting}.
*
*
* Then the five per-document value types (Numeric,Binary,Sorted,SortedSet,SortedNumeric) are
* encoded using the following strategies:
*
* {@link DocValuesType#NUMERIC NUMERIC}:
*
* - Delta-compressed: per-document integers written as deltas from the minimum value,
* compressed with bitpacking. For more information, see {@link DirectWriter}.
*
- Table-compressed: when the number of unique values is very small (< 256), and
* when there are unused "gaps" in the range of values used (such as {@link SmallFloat}),
* a lookup table is written instead. Each per-document entry is instead the ordinal
* to this table, and those ordinals are compressed with bitpacking ({@link DirectWriter}).
*
- GCD-compressed: when all numbers share a common divisor, such as dates, the greatest
* common denominator (GCD) is computed, and quotients are stored using Delta-compressed Numerics.
*
- Monotonic-compressed: when all numbers are monotonically increasing offsets, they are written
* as blocks of bitpacked integers, encoding the deviation from the expected delta.
*
- Const-compressed: when there is only one possible value, no per-document data is needed and
* this value is encoded alone.
*
*
* {@link DocValuesType#BINARY BINARY}:
*
* - Fixed-width Binary: one large concatenated byte[] is written, along with the fixed length.
* Each document's value can be addressed directly with multiplication ({@code docID * length}).
*
- Variable-width Binary: one large concatenated byte[] is written, along with end addresses
* for each document. The addresses are written as Monotonic-compressed numerics.
*
- Prefix-compressed Binary: values are written in chunks of 16, with the first value written
* completely and other values sharing prefixes. chunk addresses are written as Monotonic-compressed
* numerics. A reverse lookup index is written from a portion of every 1024th term.
*
*
* {@link DocValuesType#SORTED SORTED}:
*
* - Sorted: a mapping of ordinals to deduplicated terms is written as Prefix-compressed Binary,
* along with the per-document ordinals written using one of the numeric strategies above.
*
*
* {@link DocValuesType#SORTED_SET SORTED_SET}:
*
* - Single: if all documents have 0 or 1 value, then data are written like SORTED.
*
- SortedSet: a mapping of ordinals to deduplicated terms is written as Binary,
* an ordinal list and per-document index into this list are written using the numeric strategies
* above.
*
*
* {@link DocValuesType#SORTED_NUMERIC SORTED_NUMERIC}:
*
* - Single: if all documents have 0 or 1 value, then data are written like NUMERIC.
*
- SortedNumeric: a value list and per-document index into this list are written using the numeric
* strategies above.
*
*
* Files:
*
* - .dvd: DocValues data
* - .dvm: DocValues metadata
*
* @lucene.experimental
*/
public final class Lucene70DocValuesFormat extends DocValuesFormat {
/** Sole Constructor */
public Lucene70DocValuesFormat() {
super("Lucene70");
}
@Override
public DocValuesConsumer fieldsConsumer(SegmentWriteState state) throws IOException {
return new Lucene70DocValuesConsumer(state, DATA_CODEC, DATA_EXTENSION, META_CODEC, META_EXTENSION);
}
@Override
public DocValuesProducer fieldsProducer(SegmentReadState state) throws IOException {
return new Lucene70DocValuesProducer(state, DATA_CODEC, DATA_EXTENSION, META_CODEC, META_EXTENSION);
}
static final String DATA_CODEC = "Lucene70DocValuesData";
static final String DATA_EXTENSION = "dvd";
static final String META_CODEC = "Lucene70DocValuesMetadata";
static final String META_EXTENSION = "dvm";
static final int VERSION_START = 0;
static final int VERSION_CURRENT = VERSION_START;
// indicates docvalues type
static final byte NUMERIC = 0;
static final byte BINARY = 1;
static final byte SORTED = 2;
static final byte SORTED_SET = 3;
static final byte SORTED_NUMERIC = 4;
static final int DIRECT_MONOTONIC_BLOCK_SHIFT = 16;
static final int NUMERIC_BLOCK_SHIFT = 14;
static final int NUMERIC_BLOCK_SIZE = 1 << NUMERIC_BLOCK_SHIFT;
static final int TERMS_DICT_BLOCK_SHIFT = 4;
static final int TERMS_DICT_BLOCK_SIZE = 1 << TERMS_DICT_BLOCK_SHIFT;
static final int TERMS_DICT_BLOCK_MASK = TERMS_DICT_BLOCK_SIZE - 1;
static final int TERMS_DICT_REVERSE_INDEX_SHIFT = 10;
static final int TERMS_DICT_REVERSE_INDEX_SIZE = 1 << TERMS_DICT_REVERSE_INDEX_SHIFT;
static final int TERMS_DICT_REVERSE_INDEX_MASK = TERMS_DICT_REVERSE_INDEX_SIZE - 1;
}