All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.alibaba.middleware.ushura.util.ThreadLocalRandom Maven / Gradle / Ivy

/*
 * Copyright 2013 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */

/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package com.alibaba.middleware.ushura.util;

import java.security.SecureRandom;
import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;

/**
 * A random number generator isolated to the current thread. Like the global {@link java.util.Random} generator used by
 * the {@link java.lang.Math} class, a {@code ThreadLocalRandom} is initialized with an internally generated seed that
 * may not otherwise be modified. When applicable, use of {@code ThreadLocalRandom} rather than shared {@code Random}
 * objects in concurrent programs will typically encounter much less overhead and contention. Use of
 * {@code ThreadLocalRandom} is particularly appropriate when multiple tasks (for example, each a
 * {@link io.netty.util.internal.chmv8.ForkJoinTask}) use random numbers in parallel in thread pools.
 *
 * 

* Usages of this class should typically be of the form: {@code ThreadLocalRandom.current().nextX(...)} (where {@code X} * is {@code Int}, {@code Long}, etc). When all usages are of this form, it is never possible to accidently share a * {@code ThreadLocalRandom} across multiple threads. * *

* This class also provides additional commonly used bounded random generation methods. * * //since 1.7 //author Doug Lea */ @SuppressWarnings("all") public class ThreadLocalRandom extends Random { private static final AtomicLong seedUniquifier = new AtomicLong(); private static volatile long initialSeedUniquifier; public static void setInitialSeedUniquifier(long initialSeedUniquifier) { ThreadLocalRandom.initialSeedUniquifier = initialSeedUniquifier; } public static synchronized long getInitialSeedUniquifier() { // Use the value set via the setter. long initialSeedUniquifier = ThreadLocalRandom.initialSeedUniquifier; // Otherwise, generate one. if (initialSeedUniquifier == 0) { // Try to generate a real random number from /dev/random. // Get from a different thread to avoid blocking indefinitely on a machine without much entrophy. final BlockingQueue queue = new LinkedBlockingQueue(); Thread generatorThread = new Thread("initialSeedUniquifierGenerator") { @Override public void run() { SecureRandom random = new SecureRandom(); // Get the real random seed from /dev/random queue.add(random.nextLong()); } }; generatorThread.start(); // Get the random seed from the thread with timeout. final long timeoutSeconds = 3; final long deadLine = System.nanoTime() + TimeUnit.SECONDS.toNanos(timeoutSeconds); for (;;) { long waitTime = deadLine - System.nanoTime(); if (waitTime <= 0) { break; } try { Long result = queue.poll(waitTime, TimeUnit.NANOSECONDS); if (result != null) { initialSeedUniquifier = result; break; } } catch (InterruptedException ignore) { // Ignore } } // Just in case the initialSeedUniquifier is zero or some other constant initialSeedUniquifier ^= 0x3255ecdc33bae119L; // just a meaningless random number initialSeedUniquifier ^= Long.reverse(System.nanoTime()); ThreadLocalRandom.initialSeedUniquifier = initialSeedUniquifier; } return initialSeedUniquifier; } private static long newSeed() { for (;;) { final long current = seedUniquifier.get(); final long actualCurrent = current != 0 ? current : getInitialSeedUniquifier(); // L'Ecuyer, "Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure", 1999 final long next = actualCurrent * 181783497276652981L; if (seedUniquifier.compareAndSet(current, next)) { return next ^ System.nanoTime(); } } } // same constants as Random, but must be redeclared because private private static final long multiplier = 0x5DEECE66DL; private static final long addend = 0xBL; private static final long mask = (1L << 48) - 1; /** * The random seed. We can't use super.seed. */ private long rnd; /** * Initialization flag to permit calls to setSeed to succeed only while executing the Random constructor. We can't * allow others since it would cause setting seed in one part of a program to unintentionally impact other usages by * the thread. */ boolean initialized; // Padding to help avoid memory contention among seed updates in // different TLRs in the common case that they are located near // each other. private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7; /** * Constructor called only by localRandom.initialValue. */ ThreadLocalRandom() { super(newSeed()); initialized = true; } /** * The actual ThreadLocal */ private static final ThreadLocal localRandom = new ThreadLocal() { protected ThreadLocalRandom initialValue() { return new ThreadLocalRandom(); } }; /** * Returns the current thread's {@code ThreadLocalRandom}. * * @return the current thread's {@code ThreadLocalRandom} */ public static ThreadLocalRandom current() { return localRandom.get(); } /** * Throws {@code UnsupportedOperationException}. Setting seeds in this generator is not supported. * * @throws UnsupportedOperationException * always */ public void setSeed(long seed) { if (initialized) { throw new UnsupportedOperationException(); } rnd = (seed ^ multiplier) & mask; } protected int next(int bits) { rnd = (rnd * multiplier + addend) & mask; return (int) (rnd >>> (48 - bits)); } /** * Returns a pseudorandom, uniformly distributed value between the given least value (inclusive) and bound * (exclusive). * * @param least * the least value returned * @param bound * the upper bound (exclusive) * @throws IllegalArgumentException * if least greater than or equal to bound * @return the next value */ public int nextInt(int least, int bound) { if (least >= bound) { throw new IllegalArgumentException(); } return nextInt(bound - least) + least; } /** * Returns a pseudorandom, uniformly distributed value between 0 (inclusive) and the specified value (exclusive). * * @param n * the bound on the random number to be returned. Must be positive. * @return the next value * @throws IllegalArgumentException * if n is not positive */ public long nextLong(long n) { if (n <= 0) { throw new IllegalArgumentException("n must be positive"); } // Divide n by two until small enough for nextInt. On each // iteration (at most 31 of them but usually much less), // randomly choose both whether to include high bit in result // (offset) and whether to continue with the lower vs upper // half (which makes a difference only if odd). long offset = 0; while (n >= Integer.MAX_VALUE) { int bits = next(2); long half = n >>> 1; long nextn = ((bits & 2) == 0) ? half : n - half; if ((bits & 1) == 0) { offset += n - nextn; } n = nextn; } return offset + nextInt((int) n); } /** * Returns a pseudorandom, uniformly distributed value between the given least value (inclusive) and bound * (exclusive). * * @param least * the least value returned * @param bound * the upper bound (exclusive) * @return the next value * @throws IllegalArgumentException * if least greater than or equal to bound */ public long nextLong(long least, long bound) { if (least >= bound) { throw new IllegalArgumentException(); } return nextLong(bound - least) + least; } /** * Returns a pseudorandom, uniformly distributed {@code double} value between 0 (inclusive) and the specified value * (exclusive). * * @param n * the bound on the random number to be returned. Must be positive. * @return the next value * @throws IllegalArgumentException * if n is not positive */ public double nextDouble(double n) { if (n <= 0) { throw new IllegalArgumentException("n must be positive"); } return nextDouble() * n; } /** * Returns a pseudorandom, uniformly distributed value between the given least value (inclusive) and bound * (exclusive). * * @param least * the least value returned * @param bound * the upper bound (exclusive) * @return the next value * @throws IllegalArgumentException * if least greater than or equal to bound */ public double nextDouble(double least, double bound) { if (least >= bound) { throw new IllegalArgumentException(); } return nextDouble() * (bound - least) + least; } private static final long serialVersionUID = -5851777807851030925L; }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy