All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.aliyun.openservices.ons.shaded.io.grpc.TlsServerCredentials Maven / Gradle / Ivy

There is a newer version: 2.0.7.Final
Show newest version
/*
 * Copyright 2020 The gRPC Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.aliyun.openservices.ons.shaded.io.grpc;

import com.aliyun.openservices.ons.shaded.com.google.common.io.ByteStreams;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.Collections;
import java.util.EnumSet;
import java.util.Set;

/**
 * TLS credentials, providing server identity and encryption. Consumers of this credential must
 * verify they understand the configuration via the {@link #incomprehensible incomprehensible()}
 * method. Unless overridden by a {@code Feature}, server identity is provided via {@link
 * #getCertificateChain}, {@link #getPrivateKey}, and {@link #getPrivateKeyPassword}.
 */
@ExperimentalApi("https://github.com/grpc/grpc-java/issues/7621")
public final class TlsServerCredentials extends ServerCredentials {
  /**
   * Creates an instance using provided certificate chain and private key. Generally they should be
   * PEM-encoded and the key is an unencrypted PKCS#8 key (file headers have "BEGIN CERTIFICATE" and
   * "BEGIN PRIVATE KEY").
   */
  public static ServerCredentials create(File certChain, File privateKey) throws IOException {
    return newBuilder().keyManager(certChain, privateKey).build();
  }

  /**
   * Creates an instance using provided certificate chain and private key. Generally they should be
   * PEM-encoded and the key is an unencrypted PKCS#8 key (file headers have "BEGIN CERTIFICATE" and
   * "BEGIN PRIVATE KEY").
   *
   * 

The streams will not be automatically closed. */ public static ServerCredentials create( InputStream certChain, InputStream privateKey) throws IOException { return newBuilder().keyManager(certChain, privateKey).build(); } private final boolean fakeFeature; private final byte[] certificateChain; private final byte[] privateKey; private final String privateKeyPassword; TlsServerCredentials(Builder builder) { fakeFeature = builder.fakeFeature; certificateChain = builder.certificateChain; privateKey = builder.privateKey; privateKeyPassword = builder.privateKeyPassword; } /** * The certificate chain, as a new byte array. Generally should be PEM-encoded. */ public byte[] getCertificateChain() { return Arrays.copyOf(certificateChain, certificateChain.length); } /** * The private key, as a new byte array. Generally should be in PKCS#8 format. If encrypted, * {@link #getPrivateKeyPassword} is the decryption key. If unencrypted, the password will be * {@code null}. */ public byte[] getPrivateKey() { return Arrays.copyOf(privateKey, privateKey.length); } /** Returns the password to decrypt the private key, or {@code null} if unencrypted. */ public String getPrivateKeyPassword() { return privateKeyPassword; } /** * Returns an empty set if this credential can be adequately understood via * the features listed, otherwise returns a hint of features that are lacking * to understand the configuration to be used for manual debugging. * *

An "understood" feature does not imply the caller is able to fully * handle the feature. It simply means the caller understands the feature * enough to use the appropriate APIs to read the configuration. The caller * may support just a subset of a feature, in which case the caller would * need to look at the configuration to determine if only the supported * subset is used. * *

This method may not be as simple as a set difference. There may be * multiple features that can independently satisfy a piece of configuration. * If the configuration is incomprehensible, all such features would be * returned, even though only one may be necessary. * *

An empty set does not imply that the credentials are fully understood. * There may be optional configuration that can be ignored if not understood. * *

Since {@code Feature} is an {@code enum}, {@code understoodFeatures} * should generally be an {@link java.util.EnumSet}. {@code * understoodFeatures} will not be modified. * * @param understoodFeatures the features understood by the caller * @return empty set if the caller can adequately understand the configuration */ public Set incomprehensible(Set understoodFeatures) { Set incomprehensible = EnumSet.noneOf(Feature.class); if (fakeFeature) { requiredFeature(understoodFeatures, incomprehensible, Feature.FAKE); } return Collections.unmodifiableSet(incomprehensible); } private static void requiredFeature( Set understoodFeatures, Set incomprehensible, Feature feature) { if (!understoodFeatures.contains(feature)) { incomprehensible.add(feature); } } /** * Features to understand TLS configuration. Additional enum values may be added in the future. */ public enum Feature { /** * A feature that no consumer should understand. It should be used for unit testing to confirm * a call to {@link #incomprehensible incomprehensible()} is implemented properly. */ FAKE, ; } /** Creates a builder for changing default configuration. */ public static Builder newBuilder() { return new Builder(); } /** Builder for {@link TlsServerCredentials}. */ @ExperimentalApi("https://github.com/grpc/grpc-java/issues/7621") public static final class Builder { private boolean fakeFeature; private byte[] certificateChain; private byte[] privateKey; private String privateKeyPassword; private Builder() {} /** * Requires {@link Feature#FAKE} to be understood. For use in testing consumers of this * credential. */ public Builder requireFakeFeature() { fakeFeature = true; return this; } /** * Creates an instance using provided certificate chain and private key. Generally they should * be PEM-encoded and the key is an unencrypted PKCS#8 key (file headers have "BEGIN * CERTIFICATE" and "BEGIN PRIVATE KEY"). */ public Builder keyManager(File certChain, File privateKey) throws IOException { return keyManager(certChain, privateKey, null); } /** * Creates an instance using provided certificate chain and possibly-encrypted private key. * Generally they should be PEM-encoded and the key is a PKCS#8 key. If the private key is * unencrypted, then password must be {@code null}. */ public Builder keyManager(File certChain, File privateKey, String privateKeyPassword) throws IOException { InputStream certChainIs = new FileInputStream(certChain); try { InputStream privateKeyIs = new FileInputStream(privateKey); try { return keyManager(certChainIs, privateKeyIs, privateKeyPassword); } finally { privateKeyIs.close(); } } finally { certChainIs.close(); } } /** * Creates an instance using provided certificate chain and private key. Generally they should * be PEM-encoded and the key is an unencrypted PKCS#8 key (file headers have "BEGIN * CERTIFICATE" and "BEGIN PRIVATE KEY"). */ public Builder keyManager(InputStream certChain, InputStream privateKey) throws IOException { return keyManager(certChain, privateKey, null); } /** * Creates an instance using provided certificate chain and possibly-encrypted private key. * Generally they should be PEM-encoded and the key is a PKCS#8 key. If the private key is * unencrypted, then password must be {@code null}. */ public Builder keyManager( InputStream certChain, InputStream privateKey, String privateKeyPassword) throws IOException { byte[] certChainBytes = ByteStreams.toByteArray(certChain); byte[] privateKeyBytes = ByteStreams.toByteArray(privateKey); this.certificateChain = certChainBytes; this.privateKey = privateKeyBytes; this.privateKeyPassword = privateKeyPassword; return this; } /** Construct the credentials. */ public ServerCredentials build() { if (certificateChain == null) { throw new IllegalStateException("A key manager is required"); } return new TlsServerCredentials(this); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy