org.glassfish.grizzly.compression.lzma.impl.Encoder Maven / Gradle / Ivy
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
*
* Copyright (c) 2011 Oracle and/or its affiliates. All rights reserved.
*
* The contents of this file are subject to the terms of either the GNU
* General Public License Version 2 only ("GPL") or the Common Development
* and Distribution License("CDDL") (collectively, the "License"). You
* may not use this file except in compliance with the License. You can
* obtain a copy of the License at
* https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html
* or packager/legal/LICENSE.txt. See the License for the specific
* language governing permissions and limitations under the License.
*
* When distributing the software, include this License Header Notice in each
* file and include the License file at packager/legal/LICENSE.txt.
*
* GPL Classpath Exception:
* Oracle designates this particular file as subject to the "Classpath"
* exception as provided by Oracle in the GPL Version 2 section of the License
* file that accompanied this code.
*
* Modifications:
* If applicable, add the following below the License Header, with the fields
* enclosed by brackets [] replaced by your own identifying information:
* "Portions Copyright [year] [name of copyright owner]"
*
* Contributor(s):
* If you wish your version of this file to be governed by only the CDDL or
* only the GPL Version 2, indicate your decision by adding "[Contributor]
* elects to include this software in this distribution under the [CDDL or GPL
* Version 2] license." If you don't indicate a single choice of license, a
* recipient has the option to distribute your version of this file under
* either the CDDL, the GPL Version 2 or to extend the choice of license to
* its licensees as provided above. However, if you add GPL Version 2 code
* and therefore, elected the GPL Version 2 license, then the option applies
* only if the new code is made subject to such option by the copyright
* holder.
*/
package org.glassfish.grizzly.compression.lzma.impl;
import org.glassfish.grizzly.Buffer;
import org.glassfish.grizzly.compression.lzma.LZMAEncoder;
import org.glassfish.grizzly.compression.lzma.impl.lz.BinTree;
import org.glassfish.grizzly.compression.lzma.impl.rangecoder.BitTreeEncoder;
import org.glassfish.grizzly.compression.lzma.impl.rangecoder.RangeEncoder;
import org.glassfish.grizzly.memory.MemoryManager;
import java.io.IOException;
/**
* RangeEncoder
*
* @author Igor Pavlov
*/
public class Encoder {
public static final int EMatchFinderTypeBT2 = 0;
public static final int EMatchFinderTypeBT4 = 1;
static final int kIfinityPrice = 0xFFFFFFF;
static byte[] g_FastPos = new byte[1 << 11];
static {
int kFastSlots = 22;
int c = 2;
g_FastPos[0] = 0;
g_FastPos[1] = 1;
for (int slotFast = 2; slotFast < kFastSlots; slotFast++) {
int k = (1 << ((slotFast >> 1) - 1));
for (int j = 0; j < k; j++, c++) {
g_FastPos[c] = (byte) slotFast;
}
}
}
static int getPosSlot(int pos) {
if (pos < (1 << 11)) {
return g_FastPos[pos];
}
if (pos < (1 << 21)) {
return (g_FastPos[pos >> 10] + 20);
}
return (g_FastPos[pos >> 20] + 40);
}
static int getPosSlot2(int pos) {
if (pos < (1 << 17)) {
return (g_FastPos[pos >> 6] + 12);
}
if (pos < (1 << 27)) {
return (g_FastPos[pos >> 16] + 32);
}
return (g_FastPos[pos >> 26] + 52);
}
int _state = Base.stateInit();
byte _previousByte;
int[] _repDistances = new int[Base.kNumRepDistances];
void baseInit() {
_state = Base.stateInit();
_previousByte = 0;
for (int i = 0; i < Base.kNumRepDistances; i++) {
_repDistances[i] = 0;
}
}
static final int kDefaultDictionaryLogSize = 22;
static final int kNumFastBytesDefault = 0x20;
static class LiteralEncoder {
static class Encoder2 {
short[] m_Encoders = new short[0x300];
public void init() {
RangeEncoder.initBitModels(m_Encoders);
}
public void encode(RangeEncoder rangeEncoder, byte symbol) throws IOException {
int context = 1;
for (int i = 7; i >= 0; i--) {
int bit = ((symbol >> i) & 1);
rangeEncoder.encode(m_Encoders, context, bit);
context = (context << 1) | bit;
}
}
public void encodeMatched(RangeEncoder rangeEncoder, byte matchByte, byte symbol) throws IOException {
int context = 1;
boolean same = true;
for (int i = 7; i >= 0; i--) {
int bit = ((symbol >> i) & 1);
int state = context;
if (same) {
int matchBit = ((matchByte >> i) & 1);
state += ((1 + matchBit) << 8);
same = (matchBit == bit);
}
rangeEncoder.encode(m_Encoders, state, bit);
context = (context << 1) | bit;
}
}
public int getPrice(boolean matchMode, byte matchByte, byte symbol) {
int price = 0;
int context = 1;
int i = 7;
if (matchMode) {
for (; i >= 0; i--) {
int matchBit = (matchByte >> i) & 1;
int bit = (symbol >> i) & 1;
price += RangeEncoder.getPrice(m_Encoders[((1 + matchBit) << 8) + context], bit);
context = (context << 1) | bit;
if (matchBit != bit) {
i--;
break;
}
}
}
for (; i >= 0; i--) {
int bit = (symbol >> i) & 1;
price += RangeEncoder.getPrice(m_Encoders[context], bit);
context = (context << 1) | bit;
}
return price;
}
}
Encoder2[] m_Coders;
int m_NumPrevBits;
int m_NumPosBits;
int m_PosMask;
public void create(int numPosBits, int numPrevBits) {
if (m_Coders != null && m_NumPrevBits == numPrevBits && m_NumPosBits == numPosBits) {
return;
}
m_NumPosBits = numPosBits;
m_PosMask = (1 << numPosBits) - 1;
m_NumPrevBits = numPrevBits;
int numStates = 1 << (m_NumPrevBits + m_NumPosBits);
m_Coders = new Encoder2[numStates];
for (int i = 0; i < numStates; i++) {
m_Coders[i] = new Encoder2();
}
}
public void init() {
int numStates = 1 << (m_NumPrevBits + m_NumPosBits);
for (int i = 0; i < numStates; i++) {
m_Coders[i].init();
}
}
public Encoder2 getSubCoder(int pos, byte prevByte) {
return m_Coders[((pos & m_PosMask) << m_NumPrevBits) + ((prevByte & 0xFF) >>> (8 - m_NumPrevBits))];
}
}
class LenEncoder {
short[] _choice = new short[2];
BitTreeEncoder[] _lowCoder = new BitTreeEncoder[Base.kNumPosStatesEncodingMax];
BitTreeEncoder[] _midCoder = new BitTreeEncoder[Base.kNumPosStatesEncodingMax];
BitTreeEncoder _highCoder = new BitTreeEncoder(Base.kNumHighLenBits);
public LenEncoder() {
for (int posState = 0; posState < Base.kNumPosStatesEncodingMax; posState++) {
_lowCoder[posState] = new BitTreeEncoder(Base.kNumLowLenBits);
_midCoder[posState] = new BitTreeEncoder(Base.kNumMidLenBits);
}
}
public void init(int numPosStates) {
RangeEncoder.initBitModels(_choice);
for (int posState = 0; posState < numPosStates; posState++) {
_lowCoder[posState].init();
_midCoder[posState].init();
}
_highCoder.init();
}
public void encode(RangeEncoder rangeEncoder, int symbol, int posState) throws IOException {
if (symbol < Base.kNumLowLenSymbols) {
rangeEncoder.encode(_choice, 0, 0);
_lowCoder[posState].encode(rangeEncoder, symbol);
} else {
symbol -= Base.kNumLowLenSymbols;
rangeEncoder.encode(_choice, 0, 1);
if (symbol < Base.kNumMidLenSymbols) {
rangeEncoder.encode(_choice, 1, 0);
_midCoder[posState].encode(rangeEncoder, symbol);
} else {
rangeEncoder.encode(_choice, 1, 1);
_highCoder.encode(rangeEncoder, symbol - Base.kNumMidLenSymbols);
}
}
}
public void setPrices(int posState, int numSymbols, int[] prices, int st) {
int a0 = RangeEncoder.getPrice0(_choice[0]);
int a1 = RangeEncoder.getPrice1(_choice[0]);
int b0 = a1 + RangeEncoder.getPrice0(_choice[1]);
int b1 = a1 + RangeEncoder.getPrice1(_choice[1]);
int i = 0;
for (i = 0; i < Base.kNumLowLenSymbols; i++) {
if (i >= numSymbols) {
return;
}
prices[st + i] = a0 + _lowCoder[posState].getPrice(i);
}
for (; i < Base.kNumLowLenSymbols + Base.kNumMidLenSymbols; i++) {
if (i >= numSymbols) {
return;
}
prices[st + i] = b0 + _midCoder[posState].getPrice(i - Base.kNumLowLenSymbols);
}
for (; i < numSymbols; i++) {
prices[st + i] = b1 + _highCoder.getPrice(i - Base.kNumLowLenSymbols - Base.kNumMidLenSymbols);
}
}
};
public static final int kNumLenSpecSymbols = Base.kNumLowLenSymbols + Base.kNumMidLenSymbols;
class LenPriceTableEncoder extends LenEncoder {
int[] _prices = new int[Base.kNumLenSymbols << Base.kNumPosStatesBitsEncodingMax];
int _tableSize;
int[] _counters = new int[Base.kNumPosStatesEncodingMax];
public void setTableSize(int tableSize) {
_tableSize = tableSize;
}
public int getPrice(int symbol, int posState) {
return _prices[posState * Base.kNumLenSymbols + symbol];
}
void updateTable(int posState) {
setPrices(posState, _tableSize, _prices, posState * Base.kNumLenSymbols);
_counters[posState] = _tableSize;
}
public void updateTables(int numPosStates) {
for (int posState = 0; posState < numPosStates; posState++) {
updateTable(posState);
}
}
public void encode(RangeEncoder rangeEncoder, int symbol, int posState) throws IOException {
super.encode(rangeEncoder, symbol, posState);
if (--_counters[posState] == 0) {
updateTable(posState);
}
}
}
static final int kNumOpts = 1 << 12;
static class Optimal {
public int State;
public boolean Prev1IsChar;
public boolean Prev2;
public int PosPrev2;
public int BackPrev2;
public int Price;
public int PosPrev;
public int BackPrev;
public int Backs0;
public int Backs1;
public int Backs2;
public int Backs3;
public void makeAsChar() {
BackPrev = -1;
Prev1IsChar = false;
}
public void makeAsShortRep() {
BackPrev = 0;
;
Prev1IsChar = false;
}
public boolean isShortRep() {
return (BackPrev == 0);
}
};
Optimal[] _optimum = new Optimal[kNumOpts];
BinTree _matchFinder = null;
RangeEncoder _rangeEncoder = new RangeEncoder();
short[] _isMatch = new short[Base.kNumStates << Base.kNumPosStatesBitsMax];
short[] _isRep = new short[Base.kNumStates];
short[] _isRepG0 = new short[Base.kNumStates];
short[] _isRepG1 = new short[Base.kNumStates];
short[] _isRepG2 = new short[Base.kNumStates];
short[] _isRep0Long = new short[Base.kNumStates << Base.kNumPosStatesBitsMax];
BitTreeEncoder[] _posSlotEncoder = new BitTreeEncoder[Base.kNumLenToPosStates]; // kNumPosSlotBits
short[] _posEncoders = new short[Base.kNumFullDistances - Base.kEndPosModelIndex];
BitTreeEncoder _posAlignEncoder = new BitTreeEncoder(Base.kNumAlignBits);
LenPriceTableEncoder _lenEncoder = new LenPriceTableEncoder();
LenPriceTableEncoder _repMatchLenEncoder = new LenPriceTableEncoder();
LiteralEncoder _literalEncoder = new LiteralEncoder();
int[] _matchDistances = new int[Base.kMatchMaxLen * 2 + 2];
int _numFastBytes = kNumFastBytesDefault;
int _longestMatchLength;
int _numDistancePairs;
int _additionalOffset;
int _optimumEndIndex;
int _optimumCurrentIndex;
boolean _longestMatchWasFound;
int[] _posSlotPrices = new int[1 << (Base.kNumPosSlotBits + Base.kNumLenToPosStatesBits)];
int[] _distancesPrices = new int[Base.kNumFullDistances << Base.kNumLenToPosStatesBits];
int[] _alignPrices = new int[Base.kAlignTableSize];
int _alignPriceCount;
int _distTableSize = (kDefaultDictionaryLogSize * 2);
int _posStateBits = 2;
int _posStateMask = (4 - 1);
int _numLiteralPosStateBits = 0;
int _numLiteralContextBits = 3;
int _dictionarySize = (1 << kDefaultDictionaryLogSize);
int _dictionarySizePrev = -1;
int _numFastBytesPrev = -1;
long nowPos64;
boolean _finished;
Buffer _src;
int _matchFinderType = EMatchFinderTypeBT4;
boolean _writeEndMark = false;
boolean _needReleaseMFStream = false;
void create() {
if (_matchFinder == null) {
BinTree bt = new BinTree();
int numHashBytes = 4;
if (_matchFinderType == EMatchFinderTypeBT2) {
numHashBytes = 2;
}
bt.setType(numHashBytes);
_matchFinder = bt;
}
_literalEncoder.create(_numLiteralPosStateBits, _numLiteralContextBits);
if (_dictionarySize == _dictionarySizePrev && _numFastBytesPrev == _numFastBytes) {
return;
}
_matchFinder.create(_dictionarySize, kNumOpts, _numFastBytes, Base.kMatchMaxLen + 1);
_dictionarySizePrev = _dictionarySize;
_numFastBytesPrev = _numFastBytes;
}
public Encoder() {
for (int i = 0; i < kNumOpts; i++) {
_optimum[i] = new Optimal();
}
for (int i = 0; i < Base.kNumLenToPosStates; i++) {
_posSlotEncoder[i] = new BitTreeEncoder(Base.kNumPosSlotBits);
}
}
void setWriteEndMarkerMode(boolean writeEndMarker) {
_writeEndMark = writeEndMarker;
}
void init() {
baseInit();
_rangeEncoder.init();
RangeEncoder.initBitModels(_isMatch);
RangeEncoder.initBitModels(_isRep0Long);
RangeEncoder.initBitModels(_isRep);
RangeEncoder.initBitModels(_isRepG0);
RangeEncoder.initBitModels(_isRepG1);
RangeEncoder.initBitModels(_isRepG2);
RangeEncoder.initBitModels(_posEncoders);
_literalEncoder.init();
for (int i = 0; i < Base.kNumLenToPosStates; i++) {
_posSlotEncoder[i].init();
}
_lenEncoder.init(1 << _posStateBits);
_repMatchLenEncoder.init(1 << _posStateBits);
_posAlignEncoder.init();
_longestMatchWasFound = false;
_optimumEndIndex = 0;
_optimumCurrentIndex = 0;
_additionalOffset = 0;
}
int readMatchDistances() throws java.io.IOException {
int lenRes = 0;
_numDistancePairs = _matchFinder.getMatches(_matchDistances);
if (_numDistancePairs > 0) {
lenRes = _matchDistances[_numDistancePairs - 2];
if (lenRes == _numFastBytes) {
lenRes += _matchFinder.getMatchLen((int) lenRes - 1, _matchDistances[_numDistancePairs - 1],
Base.kMatchMaxLen - lenRes);
}
}
_additionalOffset++;
return lenRes;
}
void movePos(int num) throws java.io.IOException {
if (num > 0) {
_matchFinder.skip(num);
_additionalOffset += num;
}
}
int getRepLen1Price(int state, int posState) {
return RangeEncoder.getPrice0(_isRepG0[state]) +
RangeEncoder.getPrice0(_isRep0Long[(state << Base.kNumPosStatesBitsMax) + posState]);
}
int getPureRepPrice(int repIndex, int state, int posState) {
int price;
if (repIndex == 0) {
price = RangeEncoder.getPrice0(_isRepG0[state]);
price += RangeEncoder.getPrice1(_isRep0Long[(state << Base.kNumPosStatesBitsMax) + posState]);
} else {
price = RangeEncoder.getPrice1(_isRepG0[state]);
if (repIndex == 1) {
price += RangeEncoder.getPrice0(_isRepG1[state]);
} else {
price += RangeEncoder.getPrice1(_isRepG1[state]);
price += RangeEncoder.getPrice(_isRepG2[state], repIndex - 2);
}
}
return price;
}
int getRepPrice(int repIndex, int len, int state, int posState) {
int price = _repMatchLenEncoder.getPrice(len - Base.kMatchMinLen, posState);
return price + getPureRepPrice(repIndex, state, posState);
}
int getPosLenPrice(int pos, int len, int posState) {
int price;
int lenToPosState = Base.getLenToPosState(len);
if (pos < Base.kNumFullDistances) {
price = _distancesPrices[(lenToPosState * Base.kNumFullDistances) + pos];
} else {
price = _posSlotPrices[(lenToPosState << Base.kNumPosSlotBits) + getPosSlot2(pos)] +
_alignPrices[pos & Base.kAlignMask];
}
return price + _lenEncoder.getPrice(len - Base.kMatchMinLen, posState);
}
int backward(int cur) {
_optimumEndIndex = cur;
int posMem = _optimum[cur].PosPrev;
int backMem = _optimum[cur].BackPrev;
do {
if (_optimum[cur].Prev1IsChar) {
_optimum[posMem].makeAsChar();
_optimum[posMem].PosPrev = posMem - 1;
if (_optimum[cur].Prev2) {
_optimum[posMem - 1].Prev1IsChar = false;
_optimum[posMem - 1].PosPrev = _optimum[cur].PosPrev2;
_optimum[posMem - 1].BackPrev = _optimum[cur].BackPrev2;
}
}
int posPrev = posMem;
int backCur = backMem;
backMem = _optimum[posPrev].BackPrev;
posMem = _optimum[posPrev].PosPrev;
_optimum[posPrev].BackPrev = backCur;
_optimum[posPrev].PosPrev = cur;
cur = posPrev;
} while (cur > 0);
backRes = _optimum[0].BackPrev;
_optimumCurrentIndex = _optimum[0].PosPrev;
return _optimumCurrentIndex;
}
int[] reps = new int[Base.kNumRepDistances];
int[] repLens = new int[Base.kNumRepDistances];
int backRes;
int getOptimum(int position) throws IOException {
if (_optimumEndIndex != _optimumCurrentIndex) {
int lenRes = _optimum[_optimumCurrentIndex].PosPrev - _optimumCurrentIndex;
backRes = _optimum[_optimumCurrentIndex].BackPrev;
_optimumCurrentIndex = _optimum[_optimumCurrentIndex].PosPrev;
return lenRes;
}
_optimumCurrentIndex = _optimumEndIndex = 0;
int lenMain, numDistancePairs;
if (!_longestMatchWasFound) {
lenMain = readMatchDistances();
} else {
lenMain = _longestMatchLength;
_longestMatchWasFound = false;
}
numDistancePairs = _numDistancePairs;
int numAvailableBytes = _matchFinder.getNumAvailableBytes() + 1;
if (numAvailableBytes < 2) {
backRes = -1;
return 1;
}
if (numAvailableBytes > Base.kMatchMaxLen) {
numAvailableBytes = Base.kMatchMaxLen;
}
int repMaxIndex = 0;
int i;
for (i = 0; i < Base.kNumRepDistances; i++) {
reps[i] = _repDistances[i];
repLens[i] = _matchFinder.getMatchLen(0 - 1, reps[i], Base.kMatchMaxLen);
if (repLens[i] > repLens[repMaxIndex]) {
repMaxIndex = i;
}
}
if (repLens[repMaxIndex] >= _numFastBytes) {
backRes = repMaxIndex;
int lenRes = repLens[repMaxIndex];
movePos(lenRes - 1);
return lenRes;
}
if (lenMain >= _numFastBytes) {
backRes = _matchDistances[numDistancePairs - 1] + Base.kNumRepDistances;
movePos(lenMain - 1);
return lenMain;
}
byte currentByte = _matchFinder.getIndexByte(0 - 1);
byte matchByte = _matchFinder.getIndexByte(0 - _repDistances[0] - 1 - 1);
if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2) {
backRes = -1;
return 1;
}
_optimum[0].State = _state;
int posState = (position & _posStateMask);
_optimum[1].Price = RangeEncoder.getPrice0(_isMatch[(_state << Base.kNumPosStatesBitsMax) + posState]) +
_literalEncoder.getSubCoder(position, _previousByte).getPrice(!Base.stateIsCharState(_state), matchByte, currentByte);
_optimum[1].makeAsChar();
int matchPrice = RangeEncoder.getPrice1(_isMatch[(_state << Base.kNumPosStatesBitsMax) + posState]);
int repMatchPrice = matchPrice + RangeEncoder.getPrice1(_isRep[_state]);
if (matchByte == currentByte) {
int shortRepPrice = repMatchPrice + getRepLen1Price(_state, posState);
if (shortRepPrice < _optimum[1].Price) {
_optimum[1].Price = shortRepPrice;
_optimum[1].makeAsShortRep();
}
}
int lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]);
if (lenEnd < 2) {
backRes = _optimum[1].BackPrev;
return 1;
}
_optimum[1].PosPrev = 0;
_optimum[0].Backs0 = reps[0];
_optimum[0].Backs1 = reps[1];
_optimum[0].Backs2 = reps[2];
_optimum[0].Backs3 = reps[3];
int len = lenEnd;
do {
_optimum[len--].Price = kIfinityPrice;
} while (len >= 2);
for (i = 0; i < Base.kNumRepDistances; i++) {
int repLen = repLens[i];
if (repLen < 2) {
continue;
}
int price = repMatchPrice + getPureRepPrice(i, _state, posState);
do {
int curAndLenPrice = price + _repMatchLenEncoder.getPrice(repLen - 2, posState);
Optimal optimum = _optimum[repLen];
if (curAndLenPrice < optimum.Price) {
optimum.Price = curAndLenPrice;
optimum.PosPrev = 0;
optimum.BackPrev = i;
optimum.Prev1IsChar = false;
}
} while (--repLen >= 2);
}
int normalMatchPrice = matchPrice + RangeEncoder.getPrice0(_isRep[_state]);
len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
if (len <= lenMain) {
int offs = 0;
while (len > _matchDistances[offs]) {
offs += 2;
}
for (;; len++) {
int distance = _matchDistances[offs + 1];
int curAndLenPrice = normalMatchPrice + getPosLenPrice(distance, len, posState);
Optimal optimum = _optimum[len];
if (curAndLenPrice < optimum.Price) {
optimum.Price = curAndLenPrice;
optimum.PosPrev = 0;
optimum.BackPrev = distance + Base.kNumRepDistances;
optimum.Prev1IsChar = false;
}
if (len == _matchDistances[offs]) {
offs += 2;
if (offs == numDistancePairs) {
break;
}
}
}
}
int cur = 0;
while (true) {
cur++;
if (cur == lenEnd) {
return backward(cur);
}
int newLen = readMatchDistances();
numDistancePairs = _numDistancePairs;
if (newLen >= _numFastBytes) {
_longestMatchLength = newLen;
_longestMatchWasFound = true;
return backward(cur);
}
position++;
int posPrev = _optimum[cur].PosPrev;
int state;
if (_optimum[cur].Prev1IsChar) {
posPrev--;
if (_optimum[cur].Prev2) {
state = _optimum[_optimum[cur].PosPrev2].State;
if (_optimum[cur].BackPrev2 < Base.kNumRepDistances) {
state = Base.stateUpdateRep(state);
} else {
state = Base.stateUpdateMatch(state);
}
} else {
state = _optimum[posPrev].State;
}
state = Base.stateUpdateChar(state);
} else {
state = _optimum[posPrev].State;
}
if (posPrev == cur - 1) {
if (_optimum[cur].isShortRep()) {
state = Base.stateUpdateShortRep(state);
} else {
state = Base.stateUpdateChar(state);
}
} else {
int pos;
if (_optimum[cur].Prev1IsChar && _optimum[cur].Prev2) {
posPrev = _optimum[cur].PosPrev2;
pos = _optimum[cur].BackPrev2;
state = Base.stateUpdateRep(state);
} else {
pos = _optimum[cur].BackPrev;
if (pos < Base.kNumRepDistances) {
state = Base.stateUpdateRep(state);
} else {
state = Base.stateUpdateMatch(state);
}
}
Optimal opt = _optimum[posPrev];
if (pos < Base.kNumRepDistances) {
if (pos == 0) {
reps[0] = opt.Backs0;
reps[1] = opt.Backs1;
reps[2] = opt.Backs2;
reps[3] = opt.Backs3;
} else if (pos == 1) {
reps[0] = opt.Backs1;
reps[1] = opt.Backs0;
reps[2] = opt.Backs2;
reps[3] = opt.Backs3;
} else if (pos == 2) {
reps[0] = opt.Backs2;
reps[1] = opt.Backs0;
reps[2] = opt.Backs1;
reps[3] = opt.Backs3;
} else {
reps[0] = opt.Backs3;
reps[1] = opt.Backs0;
reps[2] = opt.Backs1;
reps[3] = opt.Backs2;
}
} else {
reps[0] = (pos - Base.kNumRepDistances);
reps[1] = opt.Backs0;
reps[2] = opt.Backs1;
reps[3] = opt.Backs2;
}
}
_optimum[cur].State = state;
_optimum[cur].Backs0 = reps[0];
_optimum[cur].Backs1 = reps[1];
_optimum[cur].Backs2 = reps[2];
_optimum[cur].Backs3 = reps[3];
int curPrice = _optimum[cur].Price;
currentByte = _matchFinder.getIndexByte(0 - 1);
matchByte = _matchFinder.getIndexByte(0 - reps[0] - 1 - 1);
posState = (position & _posStateMask);
int curAnd1Price = curPrice +
RangeEncoder.getPrice0(_isMatch[(state << Base.kNumPosStatesBitsMax) + posState]) +
_literalEncoder.getSubCoder(position, _matchFinder.getIndexByte(0 - 2)).
getPrice(!Base.stateIsCharState(state), matchByte, currentByte);
Optimal nextOptimum = _optimum[cur + 1];
boolean nextIsChar = false;
if (curAnd1Price < nextOptimum.Price) {
nextOptimum.Price = curAnd1Price;
nextOptimum.PosPrev = cur;
nextOptimum.makeAsChar();
nextIsChar = true;
}
matchPrice = curPrice + RangeEncoder.getPrice1(_isMatch[(state << Base.kNumPosStatesBitsMax) + posState]);
repMatchPrice = matchPrice + RangeEncoder.getPrice1(_isRep[state]);
if (matchByte == currentByte &&
!(nextOptimum.PosPrev < cur && nextOptimum.BackPrev == 0)) {
int shortRepPrice = repMatchPrice + getRepLen1Price(state, posState);
if (shortRepPrice <= nextOptimum.Price) {
nextOptimum.Price = shortRepPrice;
nextOptimum.PosPrev = cur;
nextOptimum.makeAsShortRep();
nextIsChar = true;
}
}
int numAvailableBytesFull = _matchFinder.getNumAvailableBytes() + 1;
numAvailableBytesFull = Math.min(kNumOpts - 1 - cur, numAvailableBytesFull);
numAvailableBytes = numAvailableBytesFull;
if (numAvailableBytes < 2) {
continue;
}
if (numAvailableBytes > _numFastBytes) {
numAvailableBytes = _numFastBytes;
}
if (!nextIsChar && matchByte != currentByte) {
// try Literal + rep0
int t = Math.min(numAvailableBytesFull - 1, _numFastBytes);
int lenTest2 = _matchFinder.getMatchLen(0, reps[0], t);
if (lenTest2 >= 2) {
int state2 = Base.stateUpdateChar(state);
int posStateNext = (position + 1) & _posStateMask;
int nextRepMatchPrice = curAnd1Price +
RangeEncoder.getPrice1(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) +
RangeEncoder.getPrice1(_isRep[state2]);
{
int offset = cur + 1 + lenTest2;
while (lenEnd < offset) {
_optimum[++lenEnd].Price = kIfinityPrice;
}
int curAndLenPrice = nextRepMatchPrice + getRepPrice(
0, lenTest2, state2, posStateNext);
Optimal optimum = _optimum[offset];
if (curAndLenPrice < optimum.Price) {
optimum.Price = curAndLenPrice;
optimum.PosPrev = cur + 1;
optimum.BackPrev = 0;
optimum.Prev1IsChar = true;
optimum.Prev2 = false;
}
}
}
}
int startLen = 2; // speed optimization
for (int repIndex = 0; repIndex < Base.kNumRepDistances; repIndex++) {
int lenTest = _matchFinder.getMatchLen(0 - 1, reps[repIndex], numAvailableBytes);
if (lenTest < 2) {
continue;
}
int lenTestTemp = lenTest;
do {
while (lenEnd < cur + lenTest) {
_optimum[++lenEnd].Price = kIfinityPrice;
}
int curAndLenPrice = repMatchPrice + getRepPrice(repIndex, lenTest, state, posState);
Optimal optimum = _optimum[cur + lenTest];
if (curAndLenPrice < optimum.Price) {
optimum.Price = curAndLenPrice;
optimum.PosPrev = cur;
optimum.BackPrev = repIndex;
optimum.Prev1IsChar = false;
}
} while (--lenTest >= 2);
lenTest = lenTestTemp;
if (repIndex == 0) {
startLen = lenTest + 1;
}
// if (_maxMode)
if (lenTest < numAvailableBytesFull) {
int t = Math.min(numAvailableBytesFull - 1 - lenTest, _numFastBytes);
int lenTest2 = _matchFinder.getMatchLen(lenTest, reps[repIndex], t);
if (lenTest2 >= 2) {
int state2 = Base.stateUpdateRep(state);
int posStateNext = (position + lenTest) & _posStateMask;
int curAndLenCharPrice =
repMatchPrice + getRepPrice(repIndex, lenTest, state, posState) +
RangeEncoder.getPrice0(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) +
_literalEncoder.getSubCoder(position + lenTest,
_matchFinder.getIndexByte(lenTest - 1 - 1)).getPrice(true,
_matchFinder.getIndexByte(lenTest - 1 - (reps[repIndex] + 1)),
_matchFinder.getIndexByte(lenTest - 1));
state2 = Base.stateUpdateChar(state2);
posStateNext = (position + lenTest + 1) & _posStateMask;
int nextMatchPrice = curAndLenCharPrice + RangeEncoder.getPrice1(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]);
int nextRepMatchPrice = nextMatchPrice + RangeEncoder.getPrice1(_isRep[state2]);
// for(; lenTest2 >= 2; lenTest2--)
{
int offset = lenTest + 1 + lenTest2;
while (lenEnd < cur + offset) {
_optimum[++lenEnd].Price = kIfinityPrice;
}
int curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext);
Optimal optimum = _optimum[cur + offset];
if (curAndLenPrice < optimum.Price) {
optimum.Price = curAndLenPrice;
optimum.PosPrev = cur + lenTest + 1;
optimum.BackPrev = 0;
optimum.Prev1IsChar = true;
optimum.Prev2 = true;
optimum.PosPrev2 = cur;
optimum.BackPrev2 = repIndex;
}
}
}
}
}
if (newLen > numAvailableBytes) {
newLen = numAvailableBytes;
for (numDistancePairs = 0; newLen > _matchDistances[numDistancePairs]; numDistancePairs += 2);
_matchDistances[numDistancePairs] = newLen;
numDistancePairs += 2;
}
if (newLen >= startLen) {
normalMatchPrice = matchPrice + RangeEncoder.getPrice0(_isRep[state]);
while (lenEnd < cur + newLen) {
_optimum[++lenEnd].Price = kIfinityPrice;
}
int offs = 0;
while (startLen > _matchDistances[offs]) {
offs += 2;
}
for (int lenTest = startLen;; lenTest++) {
int curBack = _matchDistances[offs + 1];
int curAndLenPrice = normalMatchPrice + getPosLenPrice(curBack, lenTest, posState);
Optimal optimum = _optimum[cur + lenTest];
if (curAndLenPrice < optimum.Price) {
optimum.Price = curAndLenPrice;
optimum.PosPrev = cur;
optimum.BackPrev = curBack + Base.kNumRepDistances;
optimum.Prev1IsChar = false;
}
if (lenTest == _matchDistances[offs]) {
if (lenTest < numAvailableBytesFull) {
int t = Math.min(numAvailableBytesFull - 1 - lenTest, _numFastBytes);
int lenTest2 = _matchFinder.getMatchLen(lenTest, curBack, t);
if (lenTest2 >= 2) {
int state2 = Base.stateUpdateMatch(state);
int posStateNext = (position + lenTest) & _posStateMask;
int curAndLenCharPrice = curAndLenPrice +
RangeEncoder.getPrice0(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) +
_literalEncoder.getSubCoder(position + lenTest,
_matchFinder.getIndexByte(lenTest - 1 - 1)).
getPrice(true,
_matchFinder.getIndexByte(lenTest - (curBack + 1) - 1),
_matchFinder.getIndexByte(lenTest - 1));
state2 = Base.stateUpdateChar(state2);
posStateNext = (position + lenTest + 1) & _posStateMask;
int nextMatchPrice = curAndLenCharPrice + RangeEncoder
.getPrice1(_isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]);
int nextRepMatchPrice = nextMatchPrice + RangeEncoder
.getPrice1(_isRep[state2]);
int offset = lenTest + 1 + lenTest2;
while (lenEnd < cur + offset) {
_optimum[++lenEnd].Price = kIfinityPrice;
}
curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext);
optimum = _optimum[cur + offset];
if (curAndLenPrice < optimum.Price) {
optimum.Price = curAndLenPrice;
optimum.PosPrev = cur + lenTest + 1;
optimum.BackPrev = 0;
optimum.Prev1IsChar = true;
optimum.Prev2 = true;
optimum.PosPrev2 = cur;
optimum.BackPrev2 = curBack + Base.kNumRepDistances;
}
}
}
offs += 2;
if (offs == numDistancePairs) {
break;
}
}
}
}
}
}
boolean changePair(int smallDist, int bigDist) {
int kDif = 7;
return (smallDist < (1 << (32 - kDif)) && bigDist >= (smallDist << kDif));
}
void writeEndMarker(int posState) throws IOException {
if (!_writeEndMark) {
return;
}
_rangeEncoder.encode(_isMatch, (_state << Base.kNumPosStatesBitsMax) + posState, 1);
_rangeEncoder.encode(_isRep, _state, 0);
_state = Base.stateUpdateMatch(_state);
int len = Base.kMatchMinLen;
_lenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState);
int posSlot = (1 << Base.kNumPosSlotBits) - 1;
int lenToPosState = Base.getLenToPosState(len);
_posSlotEncoder[lenToPosState].encode(_rangeEncoder, posSlot);
int footerBits = 30;
int posReduced = (1 << footerBits) - 1;
_rangeEncoder.encodeDirectBits(posReduced >> Base.kNumAlignBits, footerBits - Base.kNumAlignBits);
_posAlignEncoder.reverseEncode(_rangeEncoder, posReduced & Base.kAlignMask);
}
void flush(int nowPos) throws IOException {
releaseMFBuffer();
writeEndMarker(nowPos & _posStateMask);
_rangeEncoder.flushData();
}
public void codeOneBlock(long[] inSize, long[] outSize, boolean[] finished) throws IOException {
inSize[0] = 0;
outSize[0] = 0;
finished[0] = true;
if (_src != null) {
_matchFinder.setBuffer(_src);
_matchFinder.init();
_needReleaseMFStream = true;
_src = null;
}
if (_finished) {
return;
}
_finished = true;
long progressPosValuePrev = nowPos64;
if (nowPos64 == 0) {
if (_matchFinder.getNumAvailableBytes() == 0) {
flush((int) nowPos64);
return;
}
readMatchDistances();
int posState = (int) (nowPos64) & _posStateMask;
_rangeEncoder.encode(_isMatch, (_state << Base.kNumPosStatesBitsMax) + posState, 0);
_state = Base.stateUpdateChar(_state);
byte curByte = _matchFinder.getIndexByte(0 - _additionalOffset);
_literalEncoder.getSubCoder((int) (nowPos64), _previousByte).encode(_rangeEncoder, curByte);
_previousByte = curByte;
_additionalOffset--;
nowPos64++;
}
if (_matchFinder.getNumAvailableBytes() == 0) {
flush((int) nowPos64);
return;
}
while (true) {
int len = getOptimum((int) nowPos64);
int pos = backRes;
int posState = ((int) nowPos64) & _posStateMask;
int complexState = (_state << Base.kNumPosStatesBitsMax) + posState;
if (len == 1 && pos == -1) {
_rangeEncoder.encode(_isMatch, complexState, 0);
byte curByte = _matchFinder.getIndexByte((int) (0 - _additionalOffset));
LiteralEncoder.Encoder2 subCoder = _literalEncoder.getSubCoder((int) nowPos64, _previousByte);
if (!Base.stateIsCharState(_state)) {
byte matchByte = _matchFinder.getIndexByte((int) (0 - _repDistances[0] - 1 - _additionalOffset));
subCoder.encodeMatched(_rangeEncoder, matchByte, curByte);
} else {
subCoder.encode(_rangeEncoder, curByte);
}
_previousByte = curByte;
_state = Base.stateUpdateChar(_state);
} else {
_rangeEncoder.encode(_isMatch, complexState, 1);
if (pos < Base.kNumRepDistances) {
_rangeEncoder.encode(_isRep, _state, 1);
if (pos == 0) {
_rangeEncoder.encode(_isRepG0, _state, 0);
if (len == 1) {
_rangeEncoder.encode(_isRep0Long, complexState, 0);
} else {
_rangeEncoder.encode(_isRep0Long, complexState, 1);
}
} else {
_rangeEncoder.encode(_isRepG0, _state, 1);
if (pos == 1) {
_rangeEncoder.encode(_isRepG1, _state, 0);
} else {
_rangeEncoder.encode(_isRepG1, _state, 1);
_rangeEncoder.encode(_isRepG2, _state, pos - 2);
}
}
if (len == 1) {
_state = Base.stateUpdateShortRep(_state);
} else {
_repMatchLenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState);
_state = Base.stateUpdateRep(_state);
}
int distance = _repDistances[pos];
if (pos != 0) {
for (int i = pos; i >= 1; i--) {
_repDistances[i] = _repDistances[i - 1];
}
_repDistances[0] = distance;
}
} else {
_rangeEncoder.encode(_isRep, _state, 0);
_state = Base.stateUpdateMatch(_state);
_lenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState);
pos -= Base.kNumRepDistances;
int posSlot = getPosSlot(pos);
int lenToPosState = Base.getLenToPosState(len);
_posSlotEncoder[lenToPosState].encode(_rangeEncoder, posSlot);
if (posSlot >= Base.kStartPosModelIndex) {
int footerBits = (int) ((posSlot >> 1) - 1);
int baseVal = ((2 | (posSlot & 1)) << footerBits);
int posReduced = pos - baseVal;
if (posSlot < Base.kEndPosModelIndex) {
BitTreeEncoder.reverseEncode(_posEncoders,
baseVal - posSlot - 1, _rangeEncoder, footerBits, posReduced);
} else {
_rangeEncoder.encodeDirectBits(posReduced >> Base.kNumAlignBits, footerBits - Base.kNumAlignBits);
_posAlignEncoder.reverseEncode(_rangeEncoder, posReduced & Base.kAlignMask);
_alignPriceCount++;
}
}
int distance = pos;
for (int i = Base.kNumRepDistances - 1; i >= 1; i--) {
_repDistances[i] = _repDistances[i - 1];
}
_repDistances[0] = distance;
_matchPriceCount++;
}
_previousByte = _matchFinder.getIndexByte(len - 1 - _additionalOffset);
}
_additionalOffset -= len;
nowPos64 += len;
if (_additionalOffset == 0) {
// if (!_fastMode)
if (_matchPriceCount >= (1 << 7)) {
fillDistancesPrices();
}
if (_alignPriceCount >= Base.kAlignTableSize) {
fillAlignPrices();
}
inSize[0] = nowPos64;
outSize[0] = _rangeEncoder.getProcessedSizeAdd();
if (_matchFinder.getNumAvailableBytes() == 0) {
flush((int) nowPos64);
return;
}
if (nowPos64 - progressPosValuePrev >= (1 << 12)) {
_finished = false;
finished[0] = false;
return;
}
}
}
}
void releaseMFBuffer() {
if (_matchFinder != null && _needReleaseMFStream) {
_matchFinder.releaseBuffer();
_needReleaseMFStream = false;
}
}
void setDstBuffer(Buffer dst, MemoryManager mm) {
_rangeEncoder.setBuffer(dst, mm);
}
Buffer releaseDstBuffer() {
return _rangeEncoder.releaseBuffer();
}
void releaseBuffers(LZMAEncoder.LZMAOutputState state) {
releaseMFBuffer();
state.setDst(releaseDstBuffer());
}
void setStreams(Buffer src, Buffer dst, MemoryManager mm, long inSize, long outSize) {
_src = src;
_finished = false;
create();
setDstBuffer(dst, mm);
init();
// if (!_fastMode)
{
fillDistancesPrices();
fillAlignPrices();
}
_lenEncoder.setTableSize(_numFastBytes + 1 - Base.kMatchMinLen);
_lenEncoder.updateTables(1 << _posStateBits);
_repMatchLenEncoder.setTableSize(_numFastBytes + 1 - Base.kMatchMinLen);
_repMatchLenEncoder.updateTables(1 << _posStateBits);
nowPos64 = 0;
}
long[] processedInSize = new long[1];
long[] processedOutSize = new long[1];
boolean[] finished = new boolean[1];
public void code(LZMAEncoder.LZMAOutputState state, long inSize, long outSize) throws IOException {
_needReleaseMFStream = false;
try {
setStreams(state.getSrc(), state.getDst(), state.getMemoryManager(), inSize, outSize);
while (true) {
codeOneBlock(processedInSize, processedOutSize, finished);
if (finished[0]) {
return;
}
}
} finally {
releaseBuffers(state);
}
}
// public static final int kPropSize = 5;
// byte[] properties = new byte[kPropSize];
public void writeCoderProperties(Buffer dst) throws IOException {
// properties[0] = (byte)((_posStateBits * 5 + _numLiteralPosStateBits) * 9 + _numLiteralContextBits);
// for (int i = 0; i < 4; i++)
// properties[1 + i] = (byte)(_dictionarySize >> (8 * i));
// outStream.write(properties, 0, kPropSize);
dst.put((byte) ((_posStateBits * 5 + _numLiteralPosStateBits) * 9 + _numLiteralContextBits));
for (int i = 0; i < 4; i++) {
dst.put((byte) (_dictionarySize >> (8 * i)));
}
}
int[] tempPrices = new int[Base.kNumFullDistances];
int _matchPriceCount;
void fillDistancesPrices() {
for (int i = Base.kStartPosModelIndex; i < Base.kNumFullDistances; i++) {
int posSlot = getPosSlot(i);
int footerBits = (int) ((posSlot >> 1) - 1);
int baseVal = ((2 | (posSlot & 1)) << footerBits);
tempPrices[i] = BitTreeEncoder.reverseGetPrice(_posEncoders,
baseVal - posSlot - 1, footerBits, i - baseVal);
}
for (int lenToPosState = 0; lenToPosState < Base.kNumLenToPosStates; lenToPosState++) {
int posSlot;
BitTreeEncoder encoder = _posSlotEncoder[lenToPosState];
int st = (lenToPosState << Base.kNumPosSlotBits);
for (posSlot = 0; posSlot < _distTableSize; posSlot++) {
_posSlotPrices[st + posSlot] = encoder.getPrice(posSlot);
}
for (posSlot = Base.kEndPosModelIndex; posSlot < _distTableSize; posSlot++) {
_posSlotPrices[st + posSlot] += ((((posSlot >> 1) - 1) - Base.kNumAlignBits) << RangeEncoder.kNumBitPriceShiftBits);
}
int st2 = lenToPosState * Base.kNumFullDistances;
int i;
for (i = 0; i < Base.kStartPosModelIndex; i++) {
_distancesPrices[st2 + i] = _posSlotPrices[st + i];
}
for (; i < Base.kNumFullDistances; i++) {
_distancesPrices[st2 + i] = _posSlotPrices[st + getPosSlot(i)] + tempPrices[i];
}
}
_matchPriceCount = 0;
}
void fillAlignPrices() {
for (int i = 0; i < Base.kAlignTableSize; i++) {
_alignPrices[i] = _posAlignEncoder.reverseGetPrice(i);
}
_alignPriceCount = 0;
}
public boolean setAlgorithm(int algorithm) {
/*
_fastMode = (algorithm == 0);
_maxMode = (algorithm >= 2);
*/
return true;
}
public boolean setDictionarySize(int dictionarySize) {
int kDicLogSizeMaxCompress = 29;
if (dictionarySize < (1 << Base.kDicLogSizeMin) || dictionarySize > (1 << kDicLogSizeMaxCompress)) {
return false;
}
_dictionarySize = dictionarySize;
int dicLogSize;
for (dicLogSize = 0; dictionarySize > (1 << dicLogSize); dicLogSize++);
_distTableSize = dicLogSize * 2;
return true;
}
public boolean setNumFastBytes(int numFastBytes) {
if (numFastBytes < 5 || numFastBytes > Base.kMatchMaxLen) {
return false;
}
_numFastBytes = numFastBytes;
return true;
}
public boolean setMatchFinder(int matchFinderIndex) {
if (matchFinderIndex < 0 || matchFinderIndex > 2) {
return false;
}
int matchFinderIndexPrev = _matchFinderType;
_matchFinderType = matchFinderIndex;
if (_matchFinder != null && matchFinderIndexPrev != _matchFinderType) {
_dictionarySizePrev = -1;
_matchFinder = null;
}
return true;
}
public boolean setLcLpPb(int lc, int lp, int pb) {
if (lp < 0 || lp > Base.kNumLitPosStatesBitsEncodingMax ||
lc < 0 || lc > Base.kNumLitContextBitsMax ||
pb < 0 || pb > Base.kNumPosStatesBitsEncodingMax) {
return false;
}
_numLiteralPosStateBits = lp;
_numLiteralContextBits = lc;
_posStateBits = pb;
_posStateMask = ((1) << _posStateBits) - 1;
return true;
}
public void setEndMarkerMode(boolean endMarkerMode) {
_writeEndMark = endMarkerMode;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy