android.support.v4.app.Fragment Maven / Gradle / Ivy
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.support.v4.app;
import android.app.Activity;
import android.content.ComponentCallbacks;
import android.content.Context;
import android.content.Intent;
import android.content.res.Configuration;
import android.content.res.Resources;
import android.os.Bundle;
import android.os.Parcel;
import android.os.Parcelable;
import android.support.v4.util.DebugUtils;
import android.util.AttributeSet;
import android.util.SparseArray;
import android.view.ContextMenu;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.View.OnCreateContextMenuListener;
import android.view.animation.Animation;
import android.widget.AdapterView;
import java.io.FileDescriptor;
import java.io.PrintWriter;
import java.util.HashMap;
final class FragmentState implements Parcelable {
final String mClassName;
final int mIndex;
final boolean mFromLayout;
final int mFragmentId;
final int mContainerId;
final String mTag;
final boolean mRetainInstance;
final boolean mDetached;
final Bundle mArguments;
Bundle mSavedFragmentState;
Fragment mInstance;
public FragmentState(Fragment frag) {
mClassName = frag.getClass().getName();
mIndex = frag.mIndex;
mFromLayout = frag.mFromLayout;
mFragmentId = frag.mFragmentId;
mContainerId = frag.mContainerId;
mTag = frag.mTag;
mRetainInstance = frag.mRetainInstance;
mDetached = frag.mDetached;
mArguments = frag.mArguments;
}
public FragmentState(Parcel in) {
mClassName = in.readString();
mIndex = in.readInt();
mFromLayout = in.readInt() != 0;
mFragmentId = in.readInt();
mContainerId = in.readInt();
mTag = in.readString();
mRetainInstance = in.readInt() != 0;
mDetached = in.readInt() != 0;
mArguments = in.readBundle();
mSavedFragmentState = in.readBundle();
}
public Fragment instantiate(FragmentActivity activity) {
if (mInstance != null) {
return mInstance;
}
if (mArguments != null) {
mArguments.setClassLoader(activity.getClassLoader());
}
mInstance = Fragment.instantiate(activity, mClassName, mArguments);
if (mSavedFragmentState != null) {
mSavedFragmentState.setClassLoader(activity.getClassLoader());
mInstance.mSavedFragmentState = mSavedFragmentState;
}
mInstance.setIndex(mIndex);
mInstance.mFromLayout = mFromLayout;
mInstance.mRestored = true;
mInstance.mFragmentId = mFragmentId;
mInstance.mContainerId = mContainerId;
mInstance.mTag = mTag;
mInstance.mRetainInstance = mRetainInstance;
mInstance.mDetached = mDetached;
mInstance.mFragmentManager = activity.mFragments;
return mInstance;
}
public int describeContents() {
return 0;
}
public void writeToParcel(Parcel dest, int flags) {
dest.writeString(mClassName);
dest.writeInt(mIndex);
dest.writeInt(mFromLayout ? 1 : 0);
dest.writeInt(mFragmentId);
dest.writeInt(mContainerId);
dest.writeString(mTag);
dest.writeInt(mRetainInstance ? 1 : 0);
dest.writeInt(mDetached ? 1 : 0);
dest.writeBundle(mArguments);
dest.writeBundle(mSavedFragmentState);
}
public static final Parcelable.Creator CREATOR
= new Parcelable.Creator() {
public FragmentState createFromParcel(Parcel in) {
return new FragmentState(in);
}
public FragmentState[] newArray(int size) {
return new FragmentState[size];
}
};
}
/**
* Static library support version of the framework's {@link android.app.Fragment}.
* Used to write apps that run on platforms prior to Android 3.0. When running
* on Android 3.0 or above, this implementation is still used; it does not try
* to switch to the framework's implementation. See the framework SDK
* documentation for a class overview.
*/
public class Fragment implements ComponentCallbacks, OnCreateContextMenuListener {
private static final HashMap> sClassMap =
new HashMap>();
static final int INITIALIZING = 0; // Not yet created.
static final int CREATED = 1; // Created.
static final int ACTIVITY_CREATED = 2; // The activity has finished its creation.
static final int STOPPED = 3; // Fully created, not started.
static final int STARTED = 4; // Created and started, not resumed.
static final int RESUMED = 5; // Created started and resumed.
int mState = INITIALIZING;
// Non-null if the fragment's view hierarchy is currently animating away,
// meaning we need to wait a bit on completely destroying it. This is the
// view that is animating.
View mAnimatingAway;
// If mAnimatingAway != null, this is the state we should move to once the
// animation is done.
int mStateAfterAnimating;
// When instantiated from saved state, this is the saved state.
Bundle mSavedFragmentState;
SparseArray mSavedViewState;
// Index into active fragment array.
int mIndex = -1;
// Internal unique name for this fragment;
String mWho;
// Construction arguments;
Bundle mArguments;
// Target fragment.
Fragment mTarget;
// For use when retaining a fragment: this is the index of the last mTarget.
int mTargetIndex = -1;
// Target request code.
int mTargetRequestCode;
// True if the fragment is in the list of added fragments.
boolean mAdded;
// If set this fragment is being removed from its activity.
boolean mRemoving;
// True if the fragment is in the resumed state.
boolean mResumed;
// Set to true if this fragment was instantiated from a layout file.
boolean mFromLayout;
// Set to true when the view has actually been inflated in its layout.
boolean mInLayout;
// True if this fragment has been restored from previously saved state.
boolean mRestored;
// Number of active back stack entries this fragment is in.
int mBackStackNesting;
// The fragment manager we are associated with. Set as soon as the
// fragment is used in a transaction; cleared after it has been removed
// from all transactions.
FragmentManagerImpl mFragmentManager;
// Activity this fragment is attached to.
FragmentActivity mActivity;
// The optional identifier for this fragment -- either the container ID if it
// was dynamically added to the view hierarchy, or the ID supplied in
// layout.
int mFragmentId;
// When a fragment is being dynamically added to the view hierarchy, this
// is the identifier of the parent container it is being added to.
int mContainerId;
// The optional named tag for this fragment -- usually used to find
// fragments that are not part of the layout.
String mTag;
// Set to true when the app has requested that this fragment be hidden
// from the user.
boolean mHidden;
// Set to true when the app has requested that this fragment be deactivated.
boolean mDetached;
// If set this fragment would like its instance retained across
// configuration changes.
boolean mRetainInstance;
// If set this fragment is being retained across the current config change.
boolean mRetaining;
// If set this fragment has menu items to contribute.
boolean mHasMenu;
// Set to true to allow the fragment's menu to be shown.
boolean mMenuVisible = true;
// Used to verify that subclasses call through to super class.
boolean mCalled;
// If app has requested a specific animation, this is the one to use.
int mNextAnim;
// The parent container of the fragment after dynamically added to UI.
ViewGroup mContainer;
// The View generated for this fragment.
View mView;
// The real inner view that will save/restore state.
View mInnerView;
// Whether this fragment should defer starting until after other fragments
// have been started and their loaders are finished.
boolean mDeferStart;
// Hint provided by the app that this fragment is currently visible to the user.
boolean mUserVisibleHint = true;
LoaderManagerImpl mLoaderManager;
boolean mLoadersStarted;
boolean mCheckedForLoaderManager;
/**
* State information that has been retrieved from a fragment instance
* through {@link FragmentManager#saveFragmentInstanceState(Fragment)
* FragmentManager.saveFragmentInstanceState}.
*/
public static class SavedState implements Parcelable {
final Bundle mState;
SavedState(Bundle state) {
mState = state;
}
SavedState(Parcel in, ClassLoader loader) {
mState = in.readBundle();
if (loader != null && mState != null) {
mState.setClassLoader(loader);
}
}
@Override
public int describeContents() {
return 0;
}
@Override
public void writeToParcel(Parcel dest, int flags) {
dest.writeBundle(mState);
}
public static final Parcelable.Creator CREATOR
= new Parcelable.Creator() {
public SavedState createFromParcel(Parcel in) {
return new SavedState(in, null);
}
public SavedState[] newArray(int size) {
return new SavedState[size];
}
};
}
/**
* Thrown by {@link Fragment#instantiate(Context, String, Bundle)} when
* there is an instantiation failure.
*/
static public class InstantiationException extends RuntimeException {
public InstantiationException(String msg, Exception cause) {
super(msg, cause);
}
}
/**
* Default constructor. Every fragment must have an
* empty constructor, so it can be instantiated when restoring its
* activity's state. It is strongly recommended that subclasses do not
* have other constructors with parameters, since these constructors
* will not be called when the fragment is re-instantiated; instead,
* arguments can be supplied by the caller with {@link #setArguments}
* and later retrieved by the Fragment with {@link #getArguments}.
*
* Applications should generally not implement a constructor. The
* first place application code an run where the fragment is ready to
* be used is in {@link #onAttach(Activity)}, the point where the fragment
* is actually associated with its activity. Some applications may also
* want to implement {@link #onInflate} to retrieve attributes from a
* layout resource, though should take care here because this happens for
* the fragment is attached to its activity.
*/
public Fragment() {
}
/**
* Like {@link #instantiate(Context, String, Bundle)} but with a null
* argument Bundle.
*/
public static Fragment instantiate(Context context, String fname) {
return instantiate(context, fname, null);
}
/**
* Create a new instance of a Fragment with the given class name. This is
* the same as calling its empty constructor.
*
* @param context The calling context being used to instantiate the fragment.
* This is currently just used to get its ClassLoader.
* @param fname The class name of the fragment to instantiate.
* @param args Bundle of arguments to supply to the fragment, which it
* can retrieve with {@link #getArguments()}. May be null.
* @return Returns a new fragment instance.
* @throws InstantiationException If there is a failure in instantiating
* the given fragment class. This is a runtime exception; it is not
* normally expected to happen.
*/
public static Fragment instantiate(Context context, String fname, Bundle args) {
try {
Class> clazz = sClassMap.get(fname);
if (clazz == null) {
// Class not found in the cache, see if it's real, and try to add it
clazz = context.getClassLoader().loadClass(fname);
sClassMap.put(fname, clazz);
}
Fragment f = (Fragment)clazz.newInstance();
if (args != null) {
args.setClassLoader(f.getClass().getClassLoader());
f.mArguments = args;
}
return f;
} catch (ClassNotFoundException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
} catch (java.lang.InstantiationException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
} catch (IllegalAccessException e) {
throw new InstantiationException("Unable to instantiate fragment " + fname
+ ": make sure class name exists, is public, and has an"
+ " empty constructor that is public", e);
}
}
final void restoreViewState() {
if (mSavedViewState != null) {
mInnerView.restoreHierarchyState(mSavedViewState);
mSavedViewState = null;
}
}
final void setIndex(int index) {
mIndex = index;
mWho = "android:fragment:" + mIndex;
}
final boolean isInBackStack() {
return mBackStackNesting > 0;
}
/**
* Subclasses can not override equals().
*/
@Override final public boolean equals(Object o) {
return super.equals(o);
}
/**
* Subclasses can not override hashCode().
*/
@Override final public int hashCode() {
return super.hashCode();
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder(128);
DebugUtils.buildShortClassTag(this, sb);
if (mIndex >= 0) {
sb.append(" #");
sb.append(mIndex);
}
if (mFragmentId != 0) {
sb.append(" id=0x");
sb.append(Integer.toHexString(mFragmentId));
}
if (mTag != null) {
sb.append(" ");
sb.append(mTag);
}
sb.append('}');
return sb.toString();
}
/**
* Return the identifier this fragment is known by. This is either
* the android:id value supplied in a layout or the container view ID
* supplied when adding the fragment.
*/
final public int getId() {
return mFragmentId;
}
/**
* Get the tag name of the fragment, if specified.
*/
final public String getTag() {
return mTag;
}
/**
* Supply the construction arguments for this fragment. This can only
* be called before the fragment has been attached to its activity; that
* is, you should call it immediately after constructing the fragment. The
* arguments supplied here will be retained across fragment destroy and
* creation.
*/
public void setArguments(Bundle args) {
if (mIndex >= 0) {
throw new IllegalStateException("Fragment already active");
}
mArguments = args;
}
/**
* Return the arguments supplied when the fragment was instantiated,
* if any.
*/
final public Bundle getArguments() {
return mArguments;
}
/**
* Set the initial saved state that this Fragment should restore itself
* from when first being constructed, as returned by
* {@link FragmentManager#saveFragmentInstanceState(Fragment)
* FragmentManager.saveFragmentInstanceState}.
*
* @param state The state the fragment should be restored from.
*/
public void setInitialSavedState(SavedState state) {
if (mIndex >= 0) {
throw new IllegalStateException("Fragment already active");
}
mSavedFragmentState = state != null && state.mState != null
? state.mState : null;
}
/**
* Optional target for this fragment. This may be used, for example,
* if this fragment is being started by another, and when done wants to
* give a result back to the first. The target set here is retained
* across instances via {@link FragmentManager#putFragment
* FragmentManager.putFragment()}.
*
* @param fragment The fragment that is the target of this one.
* @param requestCode Optional request code, for convenience if you
* are going to call back with {@link #onActivityResult(int, int, Intent)}.
*/
public void setTargetFragment(Fragment fragment, int requestCode) {
mTarget = fragment;
mTargetRequestCode = requestCode;
}
/**
* Return the target fragment set by {@link #setTargetFragment}.
*/
final public Fragment getTargetFragment() {
return mTarget;
}
/**
* Return the target request code set by {@link #setTargetFragment}.
*/
final public int getTargetRequestCode() {
return mTargetRequestCode;
}
/**
* Return the Activity this fragment is currently associated with.
*/
final public FragmentActivity getActivity() {
return mActivity;
}
/**
* Return getActivity().getResources()
.
*/
final public Resources getResources() {
if (mActivity == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
return mActivity.getResources();
}
/**
* Return a localized, styled CharSequence from the application's package's
* default string table.
*
* @param resId Resource id for the CharSequence text
*/
public final CharSequence getText(int resId) {
return getResources().getText(resId);
}
/**
* Return a localized string from the application's package's
* default string table.
*
* @param resId Resource id for the string
*/
public final String getString(int resId) {
return getResources().getString(resId);
}
/**
* Return a localized formatted string from the application's package's
* default string table, substituting the format arguments as defined in
* {@link java.util.Formatter} and {@link java.lang.String#format}.
*
* @param resId Resource id for the format string
* @param formatArgs The format arguments that will be used for substitution.
*/
public final String getString(int resId, Object... formatArgs) {
return getResources().getString(resId, formatArgs);
}
/**
* Return the FragmentManager for interacting with fragments associated
* with this fragment's activity. Note that this will be non-null slightly
* before {@link #getActivity()}, during the time from when the fragment is
* placed in a {@link FragmentTransaction} until it is committed and
* attached to its activity.
*/
final public FragmentManager getFragmentManager() {
return mFragmentManager;
}
/**
* Return true if the fragment is currently added to its activity.
*/
final public boolean isAdded() {
return mActivity != null && mAdded;
}
/**
* Return true if the fragment has been explicitly detached from the UI.
* That is, {@link FragmentTransaction#detach(Fragment)
* FragmentTransaction.detach(Fragment)} has been used on it.
*/
final public boolean isDetached() {
return mDetached;
}
/**
* Return true if this fragment is currently being removed from its
* activity. This is not whether its activity is finishing, but
* rather whether it is in the process of being removed from its activity.
*/
final public boolean isRemoving() {
return mRemoving;
}
/**
* Return true if the layout is included as part of an activity view
* hierarchy via the <fragment> tag. This will always be true when
* fragments are created through the <fragment> tag, except
* in the case where an old fragment is restored from a previous state and
* it does not appear in the layout of the current state.
*/
final public boolean isInLayout() {
return mInLayout;
}
/**
* Return true if the fragment is in the resumed state. This is true
* for the duration of {@link #onResume()} and {@link #onPause()} as well.
*/
final public boolean isResumed() {
return mResumed;
}
/**
* Return true if the fragment is currently visible to the user. This means
* it: (1) has been added, (2) has its view attached to the window, and
* (3) is not hidden.
*/
final public boolean isVisible() {
return isAdded() && !isHidden() && mView != null
&& mView.getWindowToken() != null && mView.getVisibility() == View.VISIBLE;
}
/**
* Return true if the fragment has been hidden. By default fragments
* are shown. You can find out about changes to this state with
* {@link #onHiddenChanged}. Note that the hidden state is orthogonal
* to other states -- that is, to be visible to the user, a fragment
* must be both started and not hidden.
*/
final public boolean isHidden() {
return mHidden;
}
/**
* Called when the hidden state (as returned by {@link #isHidden()} of
* the fragment has changed. Fragments start out not hidden; this will
* be called whenever the fragment changes state from that.
* @param hidden True if the fragment is now hidden, false if it is not
* visible.
*/
public void onHiddenChanged(boolean hidden) {
}
/**
* Control whether a fragment instance is retained across Activity
* re-creation (such as from a configuration change). This can only
* be used with fragments not in the back stack. If set, the fragment
* lifecycle will be slightly different when an activity is recreated:
*
* - {@link #onDestroy()} will not be called (but {@link #onDetach()} still
* will be, because the fragment is being detached from its current activity).
*
- {@link #onCreate(Bundle)} will not be called since the fragment
* is not being re-created.
*
- {@link #onAttach(Activity)} and {@link #onActivityCreated(Bundle)} will
* still be called.
*
*/
public void setRetainInstance(boolean retain) {
mRetainInstance = retain;
}
final public boolean getRetainInstance() {
return mRetainInstance;
}
/**
* Report that this fragment would like to participate in populating
* the options menu by receiving a call to {@link #onCreateOptionsMenu}
* and related methods.
*
* @param hasMenu If true, the fragment has menu items to contribute.
*/
public void setHasOptionsMenu(boolean hasMenu) {
if (mHasMenu != hasMenu) {
mHasMenu = hasMenu;
if (isAdded() && !isHidden()) {
mActivity.supportInvalidateOptionsMenu();
}
}
}
/**
* Set a hint for whether this fragment's menu should be visible. This
* is useful if you know that a fragment has been placed in your view
* hierarchy so that the user can not currently seen it, so any menu items
* it has should also not be shown.
*
* @param menuVisible The default is true, meaning the fragment's menu will
* be shown as usual. If false, the user will not see the menu.
*/
public void setMenuVisibility(boolean menuVisible) {
if (mMenuVisible != menuVisible) {
mMenuVisible = menuVisible;
if (mHasMenu && isAdded() && !isHidden()) {
mActivity.supportInvalidateOptionsMenu();
}
}
}
/**
* Set a hint to the system about whether this fragment's UI is currently visible
* to the user. This hint defaults to true and is persistent across fragment instance
* state save and restore.
*
* An app may set this to false to indicate that the fragment's UI is
* scrolled out of visibility or is otherwise not directly visible to the user.
* This may be used by the system to prioritize operations such as fragment lifecycle updates
* or loader ordering behavior.
*
* @param isVisibleToUser true if this fragment's UI is currently visible to the user (default),
* false if it is not.
*/
public void setUserVisibleHint(boolean isVisibleToUser) {
if (!mUserVisibleHint && isVisibleToUser && mState < STARTED) {
mFragmentManager.performPendingDeferredStart(this);
}
mUserVisibleHint = isVisibleToUser;
mDeferStart = !isVisibleToUser;
}
/**
* @return The current value of the user-visible hint on this fragment.
* @see #setUserVisibleHint(boolean)
*/
public boolean getUserVisibleHint() {
return mUserVisibleHint;
}
/**
* Return the LoaderManager for this fragment, creating it if needed.
*/
public LoaderManager getLoaderManager() {
if (mLoaderManager != null) {
return mLoaderManager;
}
if (mActivity == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
mCheckedForLoaderManager = true;
mLoaderManager = mActivity.getLoaderManager(mIndex, mLoadersStarted, true);
return mLoaderManager;
}
/**
* Call {@link Activity#startActivity(Intent)} on the fragment's
* containing Activity.
*/
public void startActivity(Intent intent) {
if (mActivity == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
mActivity.startActivityFromFragment(this, intent, -1);
}
/**
* Call {@link Activity#startActivityForResult(Intent, int)} on the fragment's
* containing Activity.
*/
public void startActivityForResult(Intent intent, int requestCode) {
if (mActivity == null) {
throw new IllegalStateException("Fragment " + this + " not attached to Activity");
}
mActivity.startActivityFromFragment(this, intent, requestCode);
}
/**
* Receive the result from a previous call to
* {@link #startActivityForResult(Intent, int)}. This follows the
* related Activity API as described there in
* {@link Activity#onActivityResult(int, int, Intent)}.
*
* @param requestCode The integer request code originally supplied to
* startActivityForResult(), allowing you to identify who this
* result came from.
* @param resultCode The integer result code returned by the child activity
* through its setResult().
* @param data An Intent, which can return result data to the caller
* (various data can be attached to Intent "extras").
*/
public void onActivityResult(int requestCode, int resultCode, Intent data) {
}
/**
* @hide Hack so that DialogFragment can make its Dialog before creating
* its views, and the view construction can use the dialog's context for
* inflation. Maybe this should become a public API. Note sure.
*/
public LayoutInflater getLayoutInflater(Bundle savedInstanceState) {
return mActivity.getLayoutInflater();
}
/**
* Called when a fragment is being created as part of a view layout
* inflation, typically from setting the content view of an activity. This
* may be called immediately after the fragment is created from a
* tag in a layout file. Note this is before the fragment's
* {@link #onAttach(Activity)} has been called; all you should do here is
* parse the attributes and save them away.
*
* This is called every time the fragment is inflated, even if it is
* being inflated into a new instance with saved state. It typically makes
* sense to re-parse the parameters each time, to allow them to change with
* different configurations.
*
* Here is a typical implementation of a fragment that can take parameters
* both through attributes supplied here as well from {@link #getArguments()}:
*
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentArguments.java
* fragment}
*
* Note that parsing the XML attributes uses a "styleable" resource. The
* declaration for the styleable used here is:
*
* {@sample development/samples/ApiDemos/res/values/attrs.xml fragment_arguments}
*
* The fragment can then be declared within its activity's content layout
* through a tag like this:
*
* {@sample development/samples/ApiDemos/res/layout/fragment_arguments.xml from_attributes}
*
* This fragment can also be created dynamically from arguments given
* at runtime in the arguments Bundle; here is an example of doing so at
* creation of the containing activity:
*
* {@sample development/samples/ApiDemos/src/com/example/android/apis/app/FragmentArguments.java
* create}
*
* @param activity The Activity that is inflating this fragment.
* @param attrs The attributes at the tag where the fragment is
* being created.
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
*/
public void onInflate(Activity activity, AttributeSet attrs, Bundle savedInstanceState) {
mCalled = true;
}
/**
* Called when a fragment is first attached to its activity.
* {@link #onCreate(Bundle)} will be called after this.
*/
public void onAttach(Activity activity) {
mCalled = true;
}
/**
* Called when a fragment loads an animation.
*/
public Animation onCreateAnimation(int transit, boolean enter, int nextAnim) {
return null;
}
/**
* Called to do initial creation of a fragment. This is called after
* {@link #onAttach(Activity)} and before
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}.
*
* Note that this can be called while the fragment's activity is
* still in the process of being created. As such, you can not rely
* on things like the activity's content view hierarchy being initialized
* at this point. If you want to do work once the activity itself is
* created, see {@link #onActivityCreated(Bundle)}.
*
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
*/
public void onCreate(Bundle savedInstanceState) {
mCalled = true;
}
/**
* Called to have the fragment instantiate its user interface view.
* This is optional, and non-graphical fragments can return null (which
* is the default implementation). This will be called between
* {@link #onCreate(Bundle)} and {@link #onActivityCreated(Bundle)}.
*
*
If you return a View from here, you will later be called in
* {@link #onDestroyView} when the view is being released.
*
* @param inflater The LayoutInflater object that can be used to inflate
* any views in the fragment,
* @param container If non-null, this is the parent view that the fragment's
* UI should be attached to. The fragment should not add the view itself,
* but this can be used to generate the LayoutParams of the view.
* @param savedInstanceState If non-null, this fragment is being re-constructed
* from a previous saved state as given here.
*
* @return Return the View for the fragment's UI, or null.
*/
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return null;
}
/**
* Called immediately after {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}
* has returned, but before any saved state has been restored in to the view.
* This gives subclasses a chance to initialize themselves once
* they know their view hierarchy has been completely created. The fragment's
* view hierarchy is not however attached to its parent at this point.
* @param view The View returned by {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}.
* @param savedInstanceState If non-null, this fragment is being re-constructed
* from a previous saved state as given here.
*/
public void onViewCreated(View view, Bundle savedInstanceState) {
}
/**
* Get the root view for the fragment's layout (the one returned by {@link #onCreateView}),
* if provided.
*
* @return The fragment's root view, or null if it has no layout.
*/
public View getView() {
return mView;
}
/**
* Called when the fragment's activity has been created and this
* fragment's view hierarchy instantiated. It can be used to do final
* initialization once these pieces are in place, such as retrieving
* views or restoring state. It is also useful for fragments that use
* {@link #setRetainInstance(boolean)} to retain their instance,
* as this callback tells the fragment when it is fully associated with
* the new activity instance. This is called after {@link #onCreateView}
* and before {@link #onStart()}.
*
* @param savedInstanceState If the fragment is being re-created from
* a previous saved state, this is the state.
*/
public void onActivityCreated(Bundle savedInstanceState) {
mCalled = true;
}
/**
* Called when the Fragment is visible to the user. This is generally
* tied to {@link Activity#onStart() Activity.onStart} of the containing
* Activity's lifecycle.
*/
public void onStart() {
mCalled = true;
if (!mLoadersStarted) {
mLoadersStarted = true;
if (!mCheckedForLoaderManager) {
mCheckedForLoaderManager = true;
mLoaderManager = mActivity.getLoaderManager(mIndex, mLoadersStarted, false);
}
if (mLoaderManager != null) {
mLoaderManager.doStart();
}
}
}
/**
* Called when the fragment is visible to the user and actively running.
* This is generally
* tied to {@link Activity#onResume() Activity.onResume} of the containing
* Activity's lifecycle.
*/
public void onResume() {
mCalled = true;
}
/**
* Called to ask the fragment to save its current dynamic state, so it
* can later be reconstructed in a new instance of its process is
* restarted. If a new instance of the fragment later needs to be
* created, the data you place in the Bundle here will be available
* in the Bundle given to {@link #onCreate(Bundle)},
* {@link #onCreateView(LayoutInflater, ViewGroup, Bundle)}, and
* {@link #onActivityCreated(Bundle)}.
*
*
This corresponds to {@link Activity#onSaveInstanceState(Bundle)
* Activity.onSaveInstanceState(Bundle)} and most of the discussion there
* applies here as well. Note however: this method may be called
* at any time before {@link #onDestroy()}. There are many situations
* where a fragment may be mostly torn down (such as when placed on the
* back stack with no UI showing), but its state will not be saved until
* its owning activity actually needs to save its state.
*
* @param outState Bundle in which to place your saved state.
*/
public void onSaveInstanceState(Bundle outState) {
}
public void onConfigurationChanged(Configuration newConfig) {
mCalled = true;
}
/**
* Called when the Fragment is no longer resumed. This is generally
* tied to {@link Activity#onPause() Activity.onPause} of the containing
* Activity's lifecycle.
*/
public void onPause() {
mCalled = true;
}
/**
* Called when the Fragment is no longer started. This is generally
* tied to {@link Activity#onStop() Activity.onStop} of the containing
* Activity's lifecycle.
*/
public void onStop() {
mCalled = true;
}
public void onLowMemory() {
mCalled = true;
}
/**
* Called when the view previously created by {@link #onCreateView} has
* been detached from the fragment. The next time the fragment needs
* to be displayed, a new view will be created. This is called
* after {@link #onStop()} and before {@link #onDestroy()}. It is called
* regardless of whether {@link #onCreateView} returned a
* non-null view. Internally it is called after the view's state has
* been saved but before it has been removed from its parent.
*/
public void onDestroyView() {
mCalled = true;
}
/**
* Called when the fragment is no longer in use. This is called
* after {@link #onStop()} and before {@link #onDetach()}.
*/
public void onDestroy() {
mCalled = true;
//Log.v("foo", "onDestroy: mCheckedForLoaderManager=" + mCheckedForLoaderManager
// + " mLoaderManager=" + mLoaderManager);
if (!mCheckedForLoaderManager) {
mCheckedForLoaderManager = true;
mLoaderManager = mActivity.getLoaderManager(mIndex, mLoadersStarted, false);
}
if (mLoaderManager != null) {
mLoaderManager.doDestroy();
}
}
/**
* Called by the fragment manager once this fragment has been removed,
* so that we don't have any left-over state if the application decides
* to re-use the instance. This only clears state that the framework
* internally manages, not things the application sets.
*/
void initState() {
mIndex = -1;
mWho = null;
mAdded = false;
mRemoving = false;
mResumed = false;
mFromLayout = false;
mInLayout = false;
mRestored = false;
mBackStackNesting = 0;
mFragmentManager = null;
mActivity = null;
mFragmentId = 0;
mContainerId = 0;
mTag = null;
mHidden = false;
mDetached = false;
mRetaining = false;
mLoaderManager = null;
mLoadersStarted = false;
mCheckedForLoaderManager = false;
}
/**
* Called when the fragment is no longer attached to its activity. This
* is called after {@link #onDestroy()}.
*/
public void onDetach() {
mCalled = true;
}
/**
* Initialize the contents of the Activity's standard options menu. You
* should place your menu items in to menu. For this method
* to be called, you must have first called {@link #setHasOptionsMenu}. See
* {@link Activity#onCreateOptionsMenu(Menu) Activity.onCreateOptionsMenu}
* for more information.
*
* @param menu The options menu in which you place your items.
*
* @see #setHasOptionsMenu
* @see #onPrepareOptionsMenu
* @see #onOptionsItemSelected
*/
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
}
/**
* Prepare the Screen's standard options menu to be displayed. This is
* called right before the menu is shown, every time it is shown. You can
* use this method to efficiently enable/disable items or otherwise
* dynamically modify the contents. See
* {@link Activity#onPrepareOptionsMenu(Menu) Activity.onPrepareOptionsMenu}
* for more information.
*
* @param menu The options menu as last shown or first initialized by
* onCreateOptionsMenu().
*
* @see #setHasOptionsMenu
* @see #onCreateOptionsMenu
*/
public void onPrepareOptionsMenu(Menu menu) {
}
/**
* Called when this fragment's option menu items are no longer being
* included in the overall options menu. Receiving this call means that
* the menu needed to be rebuilt, but this fragment's items were not
* included in the newly built menu (its {@link #onCreateOptionsMenu(Menu, MenuInflater)}
* was not called).
*/
public void onDestroyOptionsMenu() {
}
/**
* This hook is called whenever an item in your options menu is selected.
* The default implementation simply returns false to have the normal
* processing happen (calling the item's Runnable or sending a message to
* its Handler as appropriate). You can use this method for any items
* for which you would like to do processing without those other
* facilities.
*
*
Derived classes should call through to the base class for it to
* perform the default menu handling.
*
* @param item The menu item that was selected.
*
* @return boolean Return false to allow normal menu processing to
* proceed, true to consume it here.
*
* @see #onCreateOptionsMenu
*/
public boolean onOptionsItemSelected(MenuItem item) {
return false;
}
/**
* This hook is called whenever the options menu is being closed (either by the user canceling
* the menu with the back/menu button, or when an item is selected).
*
* @param menu The options menu as last shown or first initialized by
* onCreateOptionsMenu().
*/
public void onOptionsMenuClosed(Menu menu) {
}
/**
* Called when a context menu for the {@code view} is about to be shown.
* Unlike {@link #onCreateOptionsMenu}, this will be called every
* time the context menu is about to be shown and should be populated for
* the view (or item inside the view for {@link AdapterView} subclasses,
* this can be found in the {@code menuInfo})).
*
* Use {@link #onContextItemSelected(android.view.MenuItem)} to know when an
* item has been selected.
*
* The default implementation calls up to
* {@link Activity#onCreateContextMenu Activity.onCreateContextMenu}, though
* you can not call this implementation if you don't want that behavior.
*
* It is not safe to hold onto the context menu after this method returns.
* {@inheritDoc}
*/
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo) {
getActivity().onCreateContextMenu(menu, v, menuInfo);
}
/**
* Registers a context menu to be shown for the given view (multiple views
* can show the context menu). This method will set the
* {@link OnCreateContextMenuListener} on the view to this fragment, so
* {@link #onCreateContextMenu(ContextMenu, View, ContextMenuInfo)} will be
* called when it is time to show the context menu.
*
* @see #unregisterForContextMenu(View)
* @param view The view that should show a context menu.
*/
public void registerForContextMenu(View view) {
view.setOnCreateContextMenuListener(this);
}
/**
* Prevents a context menu to be shown for the given view. This method will
* remove the {@link OnCreateContextMenuListener} on the view.
*
* @see #registerForContextMenu(View)
* @param view The view that should stop showing a context menu.
*/
public void unregisterForContextMenu(View view) {
view.setOnCreateContextMenuListener(null);
}
/**
* This hook is called whenever an item in a context menu is selected. The
* default implementation simply returns false to have the normal processing
* happen (calling the item's Runnable or sending a message to its Handler
* as appropriate). You can use this method for any items for which you
* would like to do processing without those other facilities.
*
* Use {@link MenuItem#getMenuInfo()} to get extra information set by the
* View that added this menu item.
*
* Derived classes should call through to the base class for it to perform
* the default menu handling.
*
* @param item The context menu item that was selected.
* @return boolean Return false to allow normal context menu processing to
* proceed, true to consume it here.
*/
public boolean onContextItemSelected(MenuItem item) {
return false;
}
/**
* Print the Fragments's state into the given stream.
*
* @param prefix Text to print at the front of each line.
* @param fd The raw file descriptor that the dump is being sent to.
* @param writer The PrintWriter to which you should dump your state. This will be
* closed for you after you return.
* @param args additional arguments to the dump request.
*/
public void dump(String prefix, FileDescriptor fd, PrintWriter writer, String[] args) {
writer.print(prefix); writer.print("mFragmentId=#");
writer.print(Integer.toHexString(mFragmentId));
writer.print(" mContainerId#=");
writer.print(Integer.toHexString(mContainerId));
writer.print(" mTag="); writer.println(mTag);
writer.print(prefix); writer.print("mState="); writer.print(mState);
writer.print(" mIndex="); writer.print(mIndex);
writer.print(" mWho="); writer.print(mWho);
writer.print(" mBackStackNesting="); writer.println(mBackStackNesting);
writer.print(prefix); writer.print("mAdded="); writer.print(mAdded);
writer.print(" mRemoving="); writer.print(mRemoving);
writer.print(" mResumed="); writer.print(mResumed);
writer.print(" mFromLayout="); writer.print(mFromLayout);
writer.print(" mInLayout="); writer.println(mInLayout);
writer.print(prefix); writer.print("mHidden="); writer.print(mHidden);
writer.print(" mDetached="); writer.print(mDetached);
writer.print(" mMenuVisible="); writer.print(mMenuVisible);
writer.print(" mHasMenu="); writer.println(mHasMenu);
writer.print(prefix); writer.print("mRetainInstance="); writer.print(mRetainInstance);
writer.print(" mRetaining="); writer.print(mRetaining);
writer.print(" mUserVisibleHint="); writer.println(mUserVisibleHint);
if (mFragmentManager != null) {
writer.print(prefix); writer.print("mFragmentManager=");
writer.println(mFragmentManager);
}
if (mActivity != null) {
writer.print(prefix); writer.print("mActivity=");
writer.println(mActivity);
}
if (mArguments != null) {
writer.print(prefix); writer.print("mArguments="); writer.println(mArguments);
}
if (mSavedFragmentState != null) {
writer.print(prefix); writer.print("mSavedFragmentState=");
writer.println(mSavedFragmentState);
}
if (mSavedViewState != null) {
writer.print(prefix); writer.print("mSavedViewState=");
writer.println(mSavedViewState);
}
if (mTarget != null) {
writer.print(prefix); writer.print("mTarget="); writer.print(mTarget);
writer.print(" mTargetRequestCode=");
writer.println(mTargetRequestCode);
}
if (mNextAnim != 0) {
writer.print(prefix); writer.print("mNextAnim="); writer.println(mNextAnim);
}
if (mContainer != null) {
writer.print(prefix); writer.print("mContainer="); writer.println(mContainer);
}
if (mView != null) {
writer.print(prefix); writer.print("mView="); writer.println(mView);
}
if (mInnerView != null) {
writer.print(prefix); writer.print("mInnerView="); writer.println(mView);
}
if (mAnimatingAway != null) {
writer.print(prefix); writer.print("mAnimatingAway="); writer.println(mAnimatingAway);
writer.print(prefix); writer.print("mStateAfterAnimating=");
writer.println(mStateAfterAnimating);
}
if (mLoaderManager != null) {
writer.print(prefix); writer.println("Loader Manager:");
mLoaderManager.dump(prefix + " ", fd, writer, args);
}
}
void performStart() {
onStart();
if (mLoaderManager != null) {
mLoaderManager.doReportStart();
}
}
void performStop() {
onStop();
}
void performReallyStop() {
if (mLoadersStarted) {
mLoadersStarted = false;
if (!mCheckedForLoaderManager) {
mCheckedForLoaderManager = true;
mLoaderManager = mActivity.getLoaderManager(mIndex, mLoadersStarted, false);
}
if (mLoaderManager != null) {
if (!mActivity.mRetaining) {
mLoaderManager.doStop();
} else {
mLoaderManager.doRetain();
}
}
}
}
void performDestroyView() {
onDestroyView();
if (mLoaderManager != null) {
mLoaderManager.doReportNextStart();
}
}
}