
com.amazon.deequ.anomalydetection.HistoryUtils.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of deequ Show documentation
Show all versions of deequ Show documentation
Deequ is a library built on top of Apache Spark for defining "unit tests for data",
which measure data quality in large datasets.
/**
* Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not
* use this file except in compliance with the License. A copy of the License
* is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*
*/
package com.amazon.deequ.anomalydetection
import com.amazon.deequ.metrics.Metric
/**
* Contains utility methods to convert tuples of date and metric to a DataPoint
*/
private[deequ] object HistoryUtils {
/**
* Given a sequence of dated optional metrics, return sequence of dated optional metric values.
*
* @param metrics Sequence of dated optional metrics
* @tparam M Type of the metric value
* @return Sequence of dated optional metric values
*/
def extractMetricValues[M](metrics: Seq[(Long, Option[Metric[M]])]): Seq[DataPoint[M]] = {
metrics.map { case (date, metric) => DataPoint(date, extractMetricValue[M](metric)) }
}
/**
* Given an optional metric,returns optional metric value
*
* @param metric Optional metric
* @tparam M Type of the metric value
* @return Optional metric value
*/
def extractMetricValue[M](metric: Option[Metric[M]]): Option[M] = {
metric.flatMap(_.value.toOption)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy