com.amazon.deequ.analyzers.ColumnCount.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of deequ Show documentation
Show all versions of deequ Show documentation
Deequ is a library built on top of Apache Spark for defining "unit tests for data",
which measure data quality in large datasets.
The newest version!
/*
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not
* use this file except in compliance with the License. A copy of the License
* is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
* either express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*
*
*/
package com.amazon.deequ.analyzers
import com.amazon.deequ.metrics.DoubleMetric
import com.amazon.deequ.metrics.Entity
import org.apache.spark.sql.DataFrame
case class ColumnCount() extends Analyzer[NumMatches, DoubleMetric] {
val name = "ColumnCount"
val instance = "*"
val entity = Entity.Dataset
/**
* Compute the state (sufficient statistics) from the data
*
* @param data the input dataframe
* @return the number of columns in the input
*/
override def computeStateFrom(data: DataFrame, filterCondition: Option[String]): Option[NumMatches] = {
if (filterCondition.isDefined) {
throw new IllegalArgumentException("ColumnCount does not accept a filter condition")
} else {
val numColumns = data.columns.size
Some(NumMatches(numColumns))
}
}
/**
* Compute the metric from the state (sufficient statistics)
*
* @param state the computed state from [[computeStateFrom]]
* @return a double metric indicating the number of columns for this analyzer
*/
override def computeMetricFrom(state: Option[NumMatches]): DoubleMetric = {
state
.map(v => Analyzers.metricFromValue(v.metricValue(), name, instance, entity))
.getOrElse(Analyzers.metricFromEmpty(this, name, instance, entity))
}
/**
* Compute the metric from a failure - reports the exception thrown while trying to count columns
*/
override private[deequ] def toFailureMetric(failure: Exception): DoubleMetric = {
Analyzers.metricFromFailure(failure, name, instance, entity)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy