com.amazon.deequ.suggestions.ConstraintSuggestionRunner.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of deequ Show documentation
Show all versions of deequ Show documentation
Deequ is a library built on top of Apache Spark for defining "unit tests for data",
which measure data quality in large datasets.
The newest version!
/**
* Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not
* use this file except in compliance with the License. A copy of the License
* is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*
*/
package com.amazon.deequ.suggestions
import com.amazon.deequ.analyzers.{DataTypeInstances, KLLParameters}
import com.amazon.deequ.{VerificationResult, VerificationSuite}
import com.amazon.deequ.checks.{Check, CheckLevel}
import com.amazon.deequ.io.DfsUtils
import com.amazon.deequ.profiles.{ColumnProfile, ColumnProfilerRunner, ColumnProfiles}
import com.amazon.deequ.repository.{MetricsRepository, ResultKey}
import com.amazon.deequ.suggestions.rules._
import com.amazon.deequ.utilities.ColumnUtil.escapeColumn
import org.apache.spark.annotation.Experimental
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.{DataFrame, SparkSession}
object Rules {
val DEFAULT: Seq[ConstraintRule[ColumnProfile]] =
Seq(CompleteIfCompleteRule(), RetainCompletenessRule(), RetainTypeRule(),
CategoricalRangeRule(), FractionalCategoricalRangeRule(),
NonNegativeNumbersRule())
val STRING: Seq[ConstraintRule[ColumnProfile]] = Seq(HasMinLength(), HasMaxLength())
val NUMERICAL: Seq[ConstraintRule[ColumnProfile]] =
Seq(HasMax(), HasMin(), HasMean(), HasStandardDeviation())
val COMMON: Seq[ConstraintRule[ColumnProfile]] = Seq(UniqueIfApproximatelyUniqueRule())
val EXTENDED: Seq[ConstraintRule[ColumnProfile]] = DEFAULT ++ STRING ++ NUMERICAL ++ COMMON
}
private[suggestions] case class ConstraintSuggestionMetricsRepositoryOptions(
metricsRepository: Option[MetricsRepository],
reuseExistingResultsKey: Option[ResultKey],
failIfResultsForReusingMissing: Boolean,
saveOrAppendResultsKey: Option[ResultKey])
private[suggestions] case class ConstraintSuggestionFileOutputOptions(
session: Option[SparkSession],
saveColumnProfilesJsonToPath: Option[String],
saveConstraintSuggestionsJsonToPath: Option[String],
saveEvaluationResultsJsonToPath: Option[String],
overwriteResults: Boolean)
/**
* Generate suggestions for constraints by applying the rules on the column profiles computed from
* the data at hand.
*
*/
@Experimental
class ConstraintSuggestionRunner {
def onData(data: DataFrame): ConstraintSuggestionRunBuilder = {
new ConstraintSuggestionRunBuilder(data)
}
private[suggestions] def run(
data: DataFrame,
constraintRules: Seq[ConstraintRule[ColumnProfile]],
restrictToColumns: Option[Seq[String]],
lowCardinalityHistogramThreshold: Int,
printStatusUpdates: Boolean,
testsetWrapper: (Option[Double], Option[Long]),
cacheInputs: Boolean,
fileOutputOptions: ConstraintSuggestionFileOutputOptions,
metricsRepositoryOptions: ConstraintSuggestionMetricsRepositoryOptions,
kllWrapper: (Option[KLLParameters], Map[String, DataTypeInstances.Value]))
: ConstraintSuggestionResult = {
// get testset related data from wrapper
val testsetRatio: Option[Double] = testsetWrapper._1
val testsetSplitRandomSeed: Option[Long] = testsetWrapper._2
val kllParameters: Option[KLLParameters] = kllWrapper._1
val predefinedTypes: Map[String, DataTypeInstances.Value] = kllWrapper._2
testsetRatio.foreach { testsetRatio =>
require(testsetRatio > 0 && testsetRatio < 1.0, "Testset ratio must be in ]0, 1[")
}
val (trainingData, testData) = splitTrainTestSets(data, testsetRatio, testsetSplitRandomSeed)
if (cacheInputs) {
trainingData.cache()
testData.foreach { _.cache() }
}
val (columnProfiles, constraintSuggestions) = ConstraintSuggestionRunner().profileAndSuggest(
trainingData,
constraintRules,
restrictToColumns,
lowCardinalityHistogramThreshold,
printStatusUpdates,
metricsRepositoryOptions,
kllParameters,
predefinedTypes
)
saveColumnProfilesJsonToFileSystemIfNecessary(
fileOutputOptions,
printStatusUpdates,
columnProfiles
)
if (cacheInputs) {
trainingData.unpersist()
}
saveConstraintSuggestionJsonToFileSystemIfNecessary(
fileOutputOptions,
printStatusUpdates,
constraintSuggestions
)
val verificationResult = evaluateConstraintsIfNecessary(
testData,
printStatusUpdates,
constraintSuggestions,
fileOutputOptions
)
val columnsWithSuggestions = constraintSuggestions
.map(suggestion => suggestion.columnName -> suggestion)
.groupBy { case (columnName, _) => columnName }
.mapValues { groupedSuggestionsWithColumnNames =>
groupedSuggestionsWithColumnNames.map { case (_, suggestion) => suggestion } }
ConstraintSuggestionResult(columnProfiles.profiles, columnProfiles.numRecords,
columnsWithSuggestions, verificationResult)
}
private[this] def splitTrainTestSets(
data: DataFrame,
testsetRatio: Option[Double],
testsetSplitRandomSeed: Option[Long])
: (DataFrame, Option[DataFrame]) = {
if (testsetRatio.isDefined) {
val trainsetRatio = 1.0 - testsetRatio.get
val Array(trainSplit, testSplit) =
if (testsetSplitRandomSeed.isDefined) {
data.randomSplit(
Array(trainsetRatio, testsetRatio.get),
testsetSplitRandomSeed.get)
} else {
data.randomSplit(Array(trainsetRatio, testsetRatio.get))
}
(trainSplit, Some(testSplit))
} else {
(data, None)
}
}
private[suggestions] def profileAndSuggest(
trainingData: DataFrame,
constraintRules: Seq[ConstraintRule[ColumnProfile]],
restrictToColumns: Option[Seq[String]],
lowCardinalityHistogramThreshold: Int,
printStatusUpdates: Boolean,
metricsRepositoryOptions: ConstraintSuggestionMetricsRepositoryOptions,
kllParameters: Option[KLLParameters],
predefinedTypes: Map[String, DataTypeInstances.Value])
: (ColumnProfiles, Seq[ConstraintSuggestion]) = {
var columnProfilerRunner = ColumnProfilerRunner()
.onData(trainingData)
.printStatusUpdates(printStatusUpdates)
.withLowCardinalityHistogramThreshold(lowCardinalityHistogramThreshold)
restrictToColumns.foreach { restrictToColumns =>
columnProfilerRunner = columnProfilerRunner.restrictToColumns(restrictToColumns)
}
columnProfilerRunner = columnProfilerRunner.setKLLParameters(kllParameters)
columnProfilerRunner =
columnProfilerRunner.setPredefinedTypes(predefinedTypes)
metricsRepositoryOptions.metricsRepository.foreach { metricsRepository =>
var columnProfilerRunnerWithRepository = columnProfilerRunner.useRepository(metricsRepository)
metricsRepositoryOptions.reuseExistingResultsKey.foreach { reuseExistingResultsKey =>
columnProfilerRunnerWithRepository = columnProfilerRunnerWithRepository
.reuseExistingResultsForKey(reuseExistingResultsKey,
metricsRepositoryOptions.failIfResultsForReusingMissing)
}
metricsRepositoryOptions.saveOrAppendResultsKey.foreach { saveOrAppendResultsKey =>
columnProfilerRunnerWithRepository = columnProfilerRunnerWithRepository
.saveOrAppendResult(saveOrAppendResultsKey)
}
columnProfilerRunner = columnProfilerRunnerWithRepository
}
val profiles = columnProfilerRunner.run()
val relevantColumns = getRelevantColumns(trainingData.schema, restrictToColumns)
val suggestions = applyRules(constraintRules, profiles, relevantColumns)
(profiles, suggestions)
}
private[this] def applyRules(
constraintRules: Seq[ConstraintRule[ColumnProfile]],
profiles: ColumnProfiles,
columns: Seq[String])
: Seq[ConstraintSuggestion] = {
columns
.flatMap { column =>
val profile = profiles.profiles(column)
constraintRules
.filter { _.shouldBeApplied(profile, profiles.numRecords) }
.map { _.candidate(profile, profiles.numRecords) }
}
}
private[this] def getRelevantColumns(
schema: StructType,
restrictToColumns: Option[Seq[String]])
: Seq[String] = {
schema.fields
.filter { field => restrictToColumns.isEmpty || restrictToColumns.get.contains(field.name) }
.map { field => {escapeColumn(field.name) }
}
}
private[this] def saveColumnProfilesJsonToFileSystemIfNecessary(
fileOutputOptions: ConstraintSuggestionFileOutputOptions,
printStatusUpdates: Boolean,
columnProfiles: ColumnProfiles)
: Unit = {
fileOutputOptions.session.foreach { session =>
fileOutputOptions.saveColumnProfilesJsonToPath.foreach { profilesOutput =>
if (printStatusUpdates) {
println(s"### WRITING COLUMN PROFILES TO $profilesOutput")
}
DfsUtils.writeToTextFileOnDfs(session, profilesOutput,
overwrite = fileOutputOptions.overwriteResults) { writer =>
writer.append(ColumnProfiles.toJson(columnProfiles.profiles.values.toSeq).toString)
writer.newLine()
}
}
}
}
private[this] def saveConstraintSuggestionJsonToFileSystemIfNecessary(
fileOutputOptions: ConstraintSuggestionFileOutputOptions,
printStatusUpdates: Boolean,
constraintSuggestions: Seq[ConstraintSuggestion])
: Unit = {
fileOutputOptions.session.foreach { session =>
fileOutputOptions.saveConstraintSuggestionsJsonToPath.foreach { constraintsOutput =>
if (printStatusUpdates) {
println(s"### WRITING CONSTRAINTS TO $constraintsOutput")
}
DfsUtils.writeToTextFileOnDfs(session, constraintsOutput,
overwrite = fileOutputOptions.overwriteResults) { writer =>
writer.append(ConstraintSuggestions.toJson(constraintSuggestions).toString)
writer.newLine()
}
}
}
}
private[this] def saveEvaluationResultJsonToFileSystemIfNecessary(
fileOutputOptions: ConstraintSuggestionFileOutputOptions,
printStatusUpdates: Boolean,
constraintSuggestions: Seq[ConstraintSuggestion],
verificationResult: VerificationResult)
: Unit = {
fileOutputOptions.session.foreach { session =>
fileOutputOptions.saveEvaluationResultsJsonToPath.foreach { evaluationsOutput =>
if (printStatusUpdates) {
println(s"### WRITING EVALUATION RESULTS TO $evaluationsOutput")
}
DfsUtils.writeToTextFileOnDfs(session, evaluationsOutput,
overwrite = fileOutputOptions.overwriteResults) { writer =>
writer.append(ConstraintSuggestions
.evaluationResultsToJson(constraintSuggestions, verificationResult))
writer.newLine()
}
}
}
}
private[this] def evaluateConstraintsIfNecessary(
testData: Option[DataFrame],
printStatusUpdates: Boolean,
constraintSuggestions: Seq[ConstraintSuggestion],
fileOutputOptions: ConstraintSuggestionFileOutputOptions)
: Option[VerificationResult] = {
if (testData.isDefined) {
if (printStatusUpdates) {
println("### RUNNING EVALUATION")
}
val constraints = constraintSuggestions.map { constraintSuggestion =>
constraintSuggestion.constraint }
val generatedCheck = Check(CheckLevel.Warning, "generated constraints", constraints)
val verificationResult = VerificationSuite()
.onData(testData.get)
.addCheck(generatedCheck)
.run()
saveEvaluationResultJsonToFileSystemIfNecessary(
fileOutputOptions,
printStatusUpdates,
constraintSuggestions,
verificationResult)
Option(verificationResult)
} else {
None
}
}
}
object ConstraintSuggestionRunner {
def apply(): ConstraintSuggestionRunner = {
new ConstraintSuggestionRunner()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy