All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.cloudwatch.model.SingleMetricAnomalyDetector Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon CloudWatch module holds the client classes that are used for communicating with Amazon CloudWatch Service

There is a newer version: 1.12.778
Show newest version
/*
 * Copyright 2019-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.cloudwatch.model;

import java.io.Serializable;
import javax.annotation.Generated;

/**
 * 

* Designates the CloudWatch metric and statistic that provides the time series the anomaly detector uses as input. If * you have enabled unified cross-account observability, and this account is a monitoring account, the metric can be in * the same account or a source account. *

* * @see AWS API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class SingleMetricAnomalyDetector implements Serializable, Cloneable { /** *

* If the CloudWatch metric that provides the time series that the anomaly detector uses as input is in another * account, specify that account ID here. If you omit this parameter, the current account is used. *

*/ private String accountId; /** *

* The namespace of the metric to create the anomaly detection model for. *

*/ private String namespace; /** *

* The name of the metric to create the anomaly detection model for. *

*/ private String metricName; /** *

* The metric dimensions to create the anomaly detection model for. *

*/ private com.amazonaws.internal.SdkInternalList dimensions; /** *

* The statistic to use for the metric and anomaly detection model. *

*/ private String stat; /** *

* If the CloudWatch metric that provides the time series that the anomaly detector uses as input is in another * account, specify that account ID here. If you omit this parameter, the current account is used. *

* * @param accountId * If the CloudWatch metric that provides the time series that the anomaly detector uses as input is in * another account, specify that account ID here. If you omit this parameter, the current account is used. */ public void setAccountId(String accountId) { this.accountId = accountId; } /** *

* If the CloudWatch metric that provides the time series that the anomaly detector uses as input is in another * account, specify that account ID here. If you omit this parameter, the current account is used. *

* * @return If the CloudWatch metric that provides the time series that the anomaly detector uses as input is in * another account, specify that account ID here. If you omit this parameter, the current account is used. */ public String getAccountId() { return this.accountId; } /** *

* If the CloudWatch metric that provides the time series that the anomaly detector uses as input is in another * account, specify that account ID here. If you omit this parameter, the current account is used. *

* * @param accountId * If the CloudWatch metric that provides the time series that the anomaly detector uses as input is in * another account, specify that account ID here. If you omit this parameter, the current account is used. * @return Returns a reference to this object so that method calls can be chained together. */ public SingleMetricAnomalyDetector withAccountId(String accountId) { setAccountId(accountId); return this; } /** *

* The namespace of the metric to create the anomaly detection model for. *

* * @param namespace * The namespace of the metric to create the anomaly detection model for. */ public void setNamespace(String namespace) { this.namespace = namespace; } /** *

* The namespace of the metric to create the anomaly detection model for. *

* * @return The namespace of the metric to create the anomaly detection model for. */ public String getNamespace() { return this.namespace; } /** *

* The namespace of the metric to create the anomaly detection model for. *

* * @param namespace * The namespace of the metric to create the anomaly detection model for. * @return Returns a reference to this object so that method calls can be chained together. */ public SingleMetricAnomalyDetector withNamespace(String namespace) { setNamespace(namespace); return this; } /** *

* The name of the metric to create the anomaly detection model for. *

* * @param metricName * The name of the metric to create the anomaly detection model for. */ public void setMetricName(String metricName) { this.metricName = metricName; } /** *

* The name of the metric to create the anomaly detection model for. *

* * @return The name of the metric to create the anomaly detection model for. */ public String getMetricName() { return this.metricName; } /** *

* The name of the metric to create the anomaly detection model for. *

* * @param metricName * The name of the metric to create the anomaly detection model for. * @return Returns a reference to this object so that method calls can be chained together. */ public SingleMetricAnomalyDetector withMetricName(String metricName) { setMetricName(metricName); return this; } /** *

* The metric dimensions to create the anomaly detection model for. *

* * @return The metric dimensions to create the anomaly detection model for. */ public java.util.List getDimensions() { if (dimensions == null) { dimensions = new com.amazonaws.internal.SdkInternalList(); } return dimensions; } /** *

* The metric dimensions to create the anomaly detection model for. *

* * @param dimensions * The metric dimensions to create the anomaly detection model for. */ public void setDimensions(java.util.Collection dimensions) { if (dimensions == null) { this.dimensions = null; return; } this.dimensions = new com.amazonaws.internal.SdkInternalList(dimensions); } /** *

* The metric dimensions to create the anomaly detection model for. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setDimensions(java.util.Collection)} or {@link #withDimensions(java.util.Collection)} if you want to * override the existing values. *

* * @param dimensions * The metric dimensions to create the anomaly detection model for. * @return Returns a reference to this object so that method calls can be chained together. */ public SingleMetricAnomalyDetector withDimensions(Dimension... dimensions) { if (this.dimensions == null) { setDimensions(new com.amazonaws.internal.SdkInternalList(dimensions.length)); } for (Dimension ele : dimensions) { this.dimensions.add(ele); } return this; } /** *

* The metric dimensions to create the anomaly detection model for. *

* * @param dimensions * The metric dimensions to create the anomaly detection model for. * @return Returns a reference to this object so that method calls can be chained together. */ public SingleMetricAnomalyDetector withDimensions(java.util.Collection dimensions) { setDimensions(dimensions); return this; } /** *

* The statistic to use for the metric and anomaly detection model. *

* * @param stat * The statistic to use for the metric and anomaly detection model. */ public void setStat(String stat) { this.stat = stat; } /** *

* The statistic to use for the metric and anomaly detection model. *

* * @return The statistic to use for the metric and anomaly detection model. */ public String getStat() { return this.stat; } /** *

* The statistic to use for the metric and anomaly detection model. *

* * @param stat * The statistic to use for the metric and anomaly detection model. * @return Returns a reference to this object so that method calls can be chained together. */ public SingleMetricAnomalyDetector withStat(String stat) { setStat(stat); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getAccountId() != null) sb.append("AccountId: ").append(getAccountId()).append(","); if (getNamespace() != null) sb.append("Namespace: ").append(getNamespace()).append(","); if (getMetricName() != null) sb.append("MetricName: ").append(getMetricName()).append(","); if (getDimensions() != null) sb.append("Dimensions: ").append(getDimensions()).append(","); if (getStat() != null) sb.append("Stat: ").append(getStat()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof SingleMetricAnomalyDetector == false) return false; SingleMetricAnomalyDetector other = (SingleMetricAnomalyDetector) obj; if (other.getAccountId() == null ^ this.getAccountId() == null) return false; if (other.getAccountId() != null && other.getAccountId().equals(this.getAccountId()) == false) return false; if (other.getNamespace() == null ^ this.getNamespace() == null) return false; if (other.getNamespace() != null && other.getNamespace().equals(this.getNamespace()) == false) return false; if (other.getMetricName() == null ^ this.getMetricName() == null) return false; if (other.getMetricName() != null && other.getMetricName().equals(this.getMetricName()) == false) return false; if (other.getDimensions() == null ^ this.getDimensions() == null) return false; if (other.getDimensions() != null && other.getDimensions().equals(this.getDimensions()) == false) return false; if (other.getStat() == null ^ this.getStat() == null) return false; if (other.getStat() != null && other.getStat().equals(this.getStat()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getAccountId() == null) ? 0 : getAccountId().hashCode()); hashCode = prime * hashCode + ((getNamespace() == null) ? 0 : getNamespace().hashCode()); hashCode = prime * hashCode + ((getMetricName() == null) ? 0 : getMetricName().hashCode()); hashCode = prime * hashCode + ((getDimensions() == null) ? 0 : getDimensions().hashCode()); hashCode = prime * hashCode + ((getStat() == null) ? 0 : getStat().hashCode()); return hashCode; } @Override public SingleMetricAnomalyDetector clone() { try { return (SingleMetricAnomalyDetector) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy