All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.comprehend.model.FlywheelModelEvaluationMetrics Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Comprehend module holds the client classes that are used for communicating with Amazon Comprehend Service

There is a newer version: 1.12.772
Show newest version
/*
 * Copyright 2018-2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.comprehend.model;

import java.io.Serializable;
import javax.annotation.Generated;
import com.amazonaws.protocol.StructuredPojo;
import com.amazonaws.protocol.ProtocolMarshaller;

/**
 * 

* The evaluation metrics associated with the evaluated model. *

* * @see AWS API Documentation */ @Generated("com.amazonaws:aws-java-sdk-code-generator") public class FlywheelModelEvaluationMetrics implements Serializable, Cloneable, StructuredPojo { /** *

* The average F1 score from the evaluation metrics. *

*/ private Double averageF1Score; /** *

* Average precision metric for the model. *

*/ private Double averagePrecision; /** *

* Average recall metric for the model. *

*/ private Double averageRecall; /** *

* Average accuracy metric for the model. *

*/ private Double averageAccuracy; /** *

* The average F1 score from the evaluation metrics. *

* * @param averageF1Score * The average F1 score from the evaluation metrics. */ public void setAverageF1Score(Double averageF1Score) { this.averageF1Score = averageF1Score; } /** *

* The average F1 score from the evaluation metrics. *

* * @return The average F1 score from the evaluation metrics. */ public Double getAverageF1Score() { return this.averageF1Score; } /** *

* The average F1 score from the evaluation metrics. *

* * @param averageF1Score * The average F1 score from the evaluation metrics. * @return Returns a reference to this object so that method calls can be chained together. */ public FlywheelModelEvaluationMetrics withAverageF1Score(Double averageF1Score) { setAverageF1Score(averageF1Score); return this; } /** *

* Average precision metric for the model. *

* * @param averagePrecision * Average precision metric for the model. */ public void setAveragePrecision(Double averagePrecision) { this.averagePrecision = averagePrecision; } /** *

* Average precision metric for the model. *

* * @return Average precision metric for the model. */ public Double getAveragePrecision() { return this.averagePrecision; } /** *

* Average precision metric for the model. *

* * @param averagePrecision * Average precision metric for the model. * @return Returns a reference to this object so that method calls can be chained together. */ public FlywheelModelEvaluationMetrics withAveragePrecision(Double averagePrecision) { setAveragePrecision(averagePrecision); return this; } /** *

* Average recall metric for the model. *

* * @param averageRecall * Average recall metric for the model. */ public void setAverageRecall(Double averageRecall) { this.averageRecall = averageRecall; } /** *

* Average recall metric for the model. *

* * @return Average recall metric for the model. */ public Double getAverageRecall() { return this.averageRecall; } /** *

* Average recall metric for the model. *

* * @param averageRecall * Average recall metric for the model. * @return Returns a reference to this object so that method calls can be chained together. */ public FlywheelModelEvaluationMetrics withAverageRecall(Double averageRecall) { setAverageRecall(averageRecall); return this; } /** *

* Average accuracy metric for the model. *

* * @param averageAccuracy * Average accuracy metric for the model. */ public void setAverageAccuracy(Double averageAccuracy) { this.averageAccuracy = averageAccuracy; } /** *

* Average accuracy metric for the model. *

* * @return Average accuracy metric for the model. */ public Double getAverageAccuracy() { return this.averageAccuracy; } /** *

* Average accuracy metric for the model. *

* * @param averageAccuracy * Average accuracy metric for the model. * @return Returns a reference to this object so that method calls can be chained together. */ public FlywheelModelEvaluationMetrics withAverageAccuracy(Double averageAccuracy) { setAverageAccuracy(averageAccuracy); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getAverageF1Score() != null) sb.append("AverageF1Score: ").append(getAverageF1Score()).append(","); if (getAveragePrecision() != null) sb.append("AveragePrecision: ").append(getAveragePrecision()).append(","); if (getAverageRecall() != null) sb.append("AverageRecall: ").append(getAverageRecall()).append(","); if (getAverageAccuracy() != null) sb.append("AverageAccuracy: ").append(getAverageAccuracy()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof FlywheelModelEvaluationMetrics == false) return false; FlywheelModelEvaluationMetrics other = (FlywheelModelEvaluationMetrics) obj; if (other.getAverageF1Score() == null ^ this.getAverageF1Score() == null) return false; if (other.getAverageF1Score() != null && other.getAverageF1Score().equals(this.getAverageF1Score()) == false) return false; if (other.getAveragePrecision() == null ^ this.getAveragePrecision() == null) return false; if (other.getAveragePrecision() != null && other.getAveragePrecision().equals(this.getAveragePrecision()) == false) return false; if (other.getAverageRecall() == null ^ this.getAverageRecall() == null) return false; if (other.getAverageRecall() != null && other.getAverageRecall().equals(this.getAverageRecall()) == false) return false; if (other.getAverageAccuracy() == null ^ this.getAverageAccuracy() == null) return false; if (other.getAverageAccuracy() != null && other.getAverageAccuracy().equals(this.getAverageAccuracy()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getAverageF1Score() == null) ? 0 : getAverageF1Score().hashCode()); hashCode = prime * hashCode + ((getAveragePrecision() == null) ? 0 : getAveragePrecision().hashCode()); hashCode = prime * hashCode + ((getAverageRecall() == null) ? 0 : getAverageRecall().hashCode()); hashCode = prime * hashCode + ((getAverageAccuracy() == null) ? 0 : getAverageAccuracy().hashCode()); return hashCode; } @Override public FlywheelModelEvaluationMetrics clone() { try { return (FlywheelModelEvaluationMetrics) super.clone(); } catch (CloneNotSupportedException e) { throw new IllegalStateException("Got a CloneNotSupportedException from Object.clone() " + "even though we're Cloneable!", e); } } @com.amazonaws.annotation.SdkInternalApi @Override public void marshall(ProtocolMarshaller protocolMarshaller) { com.amazonaws.services.comprehend.model.transform.FlywheelModelEvaluationMetricsMarshaller.getInstance().marshall(this, protocolMarshaller); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy