All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.forecast.model.CreateForecastRequest Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Forecast module holds the client classes that are used for communicating with Amazon Forecast Service

There is a newer version: 1.12.780
Show newest version
/*
 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.forecast.model;

import java.io.Serializable;
import javax.annotation.Generated;

import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 * @see AWS API
 *      Documentation
 */
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class CreateForecastRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {

    /**
     * 

* A name for the forecast. *

*/ private String forecastName; /** *

* The Amazon Resource Name (ARN) of the predictor to use to generate the forecast. *

*/ private String predictorArn; /** *

* The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per forecast. * Accepted values include 0.01 to 0.99 (increments of .01 only) and mean. The mean * forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, Negative * Binomial). The default value is ["0.1", "0.5", "0.9"]. *

*/ private java.util.List forecastTypes; /** *

* A name for the forecast. *

* * @param forecastName * A name for the forecast. */ public void setForecastName(String forecastName) { this.forecastName = forecastName; } /** *

* A name for the forecast. *

* * @return A name for the forecast. */ public String getForecastName() { return this.forecastName; } /** *

* A name for the forecast. *

* * @param forecastName * A name for the forecast. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateForecastRequest withForecastName(String forecastName) { setForecastName(forecastName); return this; } /** *

* The Amazon Resource Name (ARN) of the predictor to use to generate the forecast. *

* * @param predictorArn * The Amazon Resource Name (ARN) of the predictor to use to generate the forecast. */ public void setPredictorArn(String predictorArn) { this.predictorArn = predictorArn; } /** *

* The Amazon Resource Name (ARN) of the predictor to use to generate the forecast. *

* * @return The Amazon Resource Name (ARN) of the predictor to use to generate the forecast. */ public String getPredictorArn() { return this.predictorArn; } /** *

* The Amazon Resource Name (ARN) of the predictor to use to generate the forecast. *

* * @param predictorArn * The Amazon Resource Name (ARN) of the predictor to use to generate the forecast. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateForecastRequest withPredictorArn(String predictorArn) { setPredictorArn(predictorArn); return this; } /** *

* The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per forecast. * Accepted values include 0.01 to 0.99 (increments of .01 only) and mean. The mean * forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, Negative * Binomial). The default value is ["0.1", "0.5", "0.9"]. *

* * @return The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per * forecast. Accepted values include 0.01 to 0.99 (increments of .01 only) and * mean. The mean forecast is different from the median (0.50) when the distribution is not * symmetric (e.g. Beta, Negative Binomial). The default value is ["0.1", "0.5", "0.9"]. */ public java.util.List getForecastTypes() { return forecastTypes; } /** *

* The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per forecast. * Accepted values include 0.01 to 0.99 (increments of .01 only) and mean. The mean * forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, Negative * Binomial). The default value is ["0.1", "0.5", "0.9"]. *

* * @param forecastTypes * The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per * forecast. Accepted values include 0.01 to 0.99 (increments of .01 only) and mean * . The mean forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, * Negative Binomial). The default value is ["0.1", "0.5", "0.9"]. */ public void setForecastTypes(java.util.Collection forecastTypes) { if (forecastTypes == null) { this.forecastTypes = null; return; } this.forecastTypes = new java.util.ArrayList(forecastTypes); } /** *

* The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per forecast. * Accepted values include 0.01 to 0.99 (increments of .01 only) and mean. The mean * forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, Negative * Binomial). The default value is ["0.1", "0.5", "0.9"]. *

*

* NOTE: This method appends the values to the existing list (if any). Use * {@link #setForecastTypes(java.util.Collection)} or {@link #withForecastTypes(java.util.Collection)} if you want * to override the existing values. *

* * @param forecastTypes * The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per * forecast. Accepted values include 0.01 to 0.99 (increments of .01 only) and mean * . The mean forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, * Negative Binomial). The default value is ["0.1", "0.5", "0.9"]. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateForecastRequest withForecastTypes(String... forecastTypes) { if (this.forecastTypes == null) { setForecastTypes(new java.util.ArrayList(forecastTypes.length)); } for (String ele : forecastTypes) { this.forecastTypes.add(ele); } return this; } /** *

* The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per forecast. * Accepted values include 0.01 to 0.99 (increments of .01 only) and mean. The mean * forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, Negative * Binomial). The default value is ["0.1", "0.5", "0.9"]. *

* * @param forecastTypes * The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per * forecast. Accepted values include 0.01 to 0.99 (increments of .01 only) and mean * . The mean forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, * Negative Binomial). The default value is ["0.1", "0.5", "0.9"]. * @return Returns a reference to this object so that method calls can be chained together. */ public CreateForecastRequest withForecastTypes(java.util.Collection forecastTypes) { setForecastTypes(forecastTypes); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getForecastName() != null) sb.append("ForecastName: ").append(getForecastName()).append(","); if (getPredictorArn() != null) sb.append("PredictorArn: ").append(getPredictorArn()).append(","); if (getForecastTypes() != null) sb.append("ForecastTypes: ").append(getForecastTypes()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreateForecastRequest == false) return false; CreateForecastRequest other = (CreateForecastRequest) obj; if (other.getForecastName() == null ^ this.getForecastName() == null) return false; if (other.getForecastName() != null && other.getForecastName().equals(this.getForecastName()) == false) return false; if (other.getPredictorArn() == null ^ this.getPredictorArn() == null) return false; if (other.getPredictorArn() != null && other.getPredictorArn().equals(this.getPredictorArn()) == false) return false; if (other.getForecastTypes() == null ^ this.getForecastTypes() == null) return false; if (other.getForecastTypes() != null && other.getForecastTypes().equals(this.getForecastTypes()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getForecastName() == null) ? 0 : getForecastName().hashCode()); hashCode = prime * hashCode + ((getPredictorArn() == null) ? 0 : getPredictorArn().hashCode()); hashCode = prime * hashCode + ((getForecastTypes() == null) ? 0 : getForecastTypes().hashCode()); return hashCode; } @Override public CreateForecastRequest clone() { return (CreateForecastRequest) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy