All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.amazonaws.services.forecast.model.CreatePredictorRequest Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon Forecast module holds the client classes that are used for communicating with Amazon Forecast Service

There is a newer version: 1.12.780
Show newest version
/*
 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package com.amazonaws.services.forecast.model;

import java.io.Serializable;
import javax.annotation.Generated;

import com.amazonaws.AmazonWebServiceRequest;

/**
 * 
 * @see AWS API
 *      Documentation
 */
@Generated("com.amazonaws:aws-java-sdk-code-generator")
public class CreatePredictorRequest extends com.amazonaws.AmazonWebServiceRequest implements Serializable, Cloneable {

    /**
     * 

* A name for the predictor. *

*/ private String predictorName; /** *

* The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML * is not set to true. *

*

* Supported algorithms: *

*
    *
  • *

    * arn:aws:forecast:::algorithm/ARIMA *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/Deep_AR_Plus *

    *

    * Supports hyperparameter optimization (HPO) *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/ETS *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/NPTS *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/Prophet *

    *
  • *
*/ private String algorithmArn; /** *

* Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the * prediction length. *

*

* For example, if you configure a dataset for daily data collection (using the DataFrequency parameter * of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 * days. *

*

* The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length. *

*/ private Integer forecastHorizon; /** *

* Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and * chooses the best algorithm and configuration for your training dataset. *

*

* The default value is false. In this case, you are required to specify an algorithm. *

*

* Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option * if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must * be false. *

*/ private Boolean performAutoML; /** *

* Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training * data. The process of performing HPO is known as running a hyperparameter tuning job. *

*

* The default value is false. In this case, Amazon Forecast uses default hyperparameter values from * the chosen algorithm. *

*

* To override the default values, set PerformHPO to true and, optionally, supply the * HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters * participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to * specify an algorithm and PerformAutoML must be false. *

*

* The following algorithm supports HPO: *

*
    *
  • *

    * DeepAR+ *

    *
  • *
*/ private Boolean performHPO; /** *

* The hyperparameters to override for model training. The hyperparameters that you can override are listed in the * individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes. *

*/ private java.util.Map trainingParameters; /** *

* Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

*/ private EvaluationParameters evaluationParameters; /** *

* Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast * uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization * (HPO). For more information, see aws-forecast-choosing-recipes. *

*

* If you included the HPOConfig object, you must set PerformHPO to true. *

*/ private HyperParameterTuningJobConfig hPOConfig; /** *

* Describes the dataset group that contains the data to use to train the predictor. *

*/ private InputDataConfig inputDataConfig; /** *

* The featurization configuration. *

*/ private FeaturizationConfig featurizationConfig; /** *

* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

*/ private EncryptionConfig encryptionConfig; /** *

* A name for the predictor. *

* * @param predictorName * A name for the predictor. */ public void setPredictorName(String predictorName) { this.predictorName = predictorName; } /** *

* A name for the predictor. *

* * @return A name for the predictor. */ public String getPredictorName() { return this.predictorName; } /** *

* A name for the predictor. *

* * @param predictorName * A name for the predictor. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withPredictorName(String predictorName) { setPredictorName(predictorName); return this; } /** *

* The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML * is not set to true. *

*

* Supported algorithms: *

*
    *
  • *

    * arn:aws:forecast:::algorithm/ARIMA *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/Deep_AR_Plus *

    *

    * Supports hyperparameter optimization (HPO) *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/ETS *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/NPTS *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/Prophet *

    *
  • *
* * @param algorithmArn * The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if * PerformAutoML is not set to true.

*

* Supported algorithms: *

*
    *
  • *

    * arn:aws:forecast:::algorithm/ARIMA *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/Deep_AR_Plus *

    *

    * Supports hyperparameter optimization (HPO) *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/ETS *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/NPTS *

    *
  • *
  • *

    * arn:aws:forecast:::algorithm/Prophet *

    *
  • */ public void setAlgorithmArn(String algorithmArn) { this.algorithmArn = algorithmArn; } /** *

    * The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML * is not set to true. *

    *

    * Supported algorithms: *

    *
      *
    • *

      * arn:aws:forecast:::algorithm/ARIMA *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/Deep_AR_Plus *

      *

      * Supports hyperparameter optimization (HPO) *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/ETS *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/NPTS *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/Prophet *

      *
    • *
    * * @return The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if * PerformAutoML is not set to true.

    *

    * Supported algorithms: *

    *
      *
    • *

      * arn:aws:forecast:::algorithm/ARIMA *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/Deep_AR_Plus *

      *

      * Supports hyperparameter optimization (HPO) *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/ETS *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/NPTS *

      *
    • *
    • *

      * arn:aws:forecast:::algorithm/Prophet *

      *
    • */ public String getAlgorithmArn() { return this.algorithmArn; } /** *

      * The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML * is not set to true. *

      *

      * Supported algorithms: *

      *
        *
      • *

        * arn:aws:forecast:::algorithm/ARIMA *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/Deep_AR_Plus *

        *

        * Supports hyperparameter optimization (HPO) *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/ETS *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/NPTS *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/Prophet *

        *
      • *
      * * @param algorithmArn * The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if * PerformAutoML is not set to true.

      *

      * Supported algorithms: *

      *
        *
      • *

        * arn:aws:forecast:::algorithm/ARIMA *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/Deep_AR_Plus *

        *

        * Supports hyperparameter optimization (HPO) *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/ETS *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/NPTS *

        *
      • *
      • *

        * arn:aws:forecast:::algorithm/Prophet *

        *
      • * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withAlgorithmArn(String algorithmArn) { setAlgorithmArn(algorithmArn); return this; } /** *

        * Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the * prediction length. *

        *

        * For example, if you configure a dataset for daily data collection (using the DataFrequency parameter * of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 * days. *

        *

        * The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length. *

        * * @param forecastHorizon * Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also * called the prediction length.

        *

        * For example, if you configure a dataset for daily data collection (using the DataFrequency * parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns * predictions for 10 days. *

        *

        * The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset * length. */ public void setForecastHorizon(Integer forecastHorizon) { this.forecastHorizon = forecastHorizon; } /** *

        * Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the * prediction length. *

        *

        * For example, if you configure a dataset for daily data collection (using the DataFrequency parameter * of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 * days. *

        *

        * The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length. *

        * * @return Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also * called the prediction length.

        *

        * For example, if you configure a dataset for daily data collection (using the DataFrequency * parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns * predictions for 10 days. *

        *

        * The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset * length. */ public Integer getForecastHorizon() { return this.forecastHorizon; } /** *

        * Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the * prediction length. *

        *

        * For example, if you configure a dataset for daily data collection (using the DataFrequency parameter * of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 * days. *

        *

        * The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length. *

        * * @param forecastHorizon * Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also * called the prediction length.

        *

        * For example, if you configure a dataset for daily data collection (using the DataFrequency * parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns * predictions for 10 days. *

        *

        * The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset * length. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withForecastHorizon(Integer forecastHorizon) { setForecastHorizon(forecastHorizon); return this; } /** *

        * Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and * chooses the best algorithm and configuration for your training dataset. *

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option * if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must * be false. *

        * * @param performAutoML * Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides * and chooses the best algorithm and configuration for your training dataset.

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good * option if you aren't sure which algorithm is suitable for your training data. In this case, * PerformHPO must be false. */ public void setPerformAutoML(Boolean performAutoML) { this.performAutoML = performAutoML; } /** *

        * Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and * chooses the best algorithm and configuration for your training dataset. *

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option * if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must * be false. *

        * * @return Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides * and chooses the best algorithm and configuration for your training dataset.

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a * good option if you aren't sure which algorithm is suitable for your training data. In this case, * PerformHPO must be false. */ public Boolean getPerformAutoML() { return this.performAutoML; } /** *

        * Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and * chooses the best algorithm and configuration for your training dataset. *

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option * if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must * be false. *

        * * @param performAutoML * Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides * and chooses the best algorithm and configuration for your training dataset.

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good * option if you aren't sure which algorithm is suitable for your training data. In this case, * PerformHPO must be false. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withPerformAutoML(Boolean performAutoML) { setPerformAutoML(performAutoML); return this; } /** *

        * Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and * chooses the best algorithm and configuration for your training dataset. *

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option * if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must * be false. *

        * * @return Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides * and chooses the best algorithm and configuration for your training dataset.

        *

        * The default value is false. In this case, you are required to specify an algorithm. *

        *

        * Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a * good option if you aren't sure which algorithm is suitable for your training data. In this case, * PerformHPO must be false. */ public Boolean isPerformAutoML() { return this.performAutoML; } /** *

        * Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training * data. The process of performing HPO is known as running a hyperparameter tuning job. *

        *

        * The default value is false. In this case, Amazon Forecast uses default hyperparameter values from * the chosen algorithm. *

        *

        * To override the default values, set PerformHPO to true and, optionally, supply the * HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters * participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to * specify an algorithm and PerformAutoML must be false. *

        *

        * The following algorithm supports HPO: *

        *
          *
        • *

          * DeepAR+ *

          *
        • *
        * * @param performHPO * Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your * training data. The process of performing HPO is known as running a hyperparameter tuning job.

        *

        * The default value is false. In this case, Amazon Forecast uses default hyperparameter values * from the chosen algorithm. *

        *

        * To override the default values, set PerformHPO to true and, optionally, supply * the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which * hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, * you are required to specify an algorithm and PerformAutoML must be false. *

        *

        * The following algorithm supports HPO: *

        *
          *
        • *

          * DeepAR+ *

          *
        • */ public void setPerformHPO(Boolean performHPO) { this.performHPO = performHPO; } /** *

          * Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training * data. The process of performing HPO is known as running a hyperparameter tuning job. *

          *

          * The default value is false. In this case, Amazon Forecast uses default hyperparameter values from * the chosen algorithm. *

          *

          * To override the default values, set PerformHPO to true and, optionally, supply the * HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters * participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to * specify an algorithm and PerformAutoML must be false. *

          *

          * The following algorithm supports HPO: *

          *
            *
          • *

            * DeepAR+ *

            *
          • *
          * * @return Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your * training data. The process of performing HPO is known as running a hyperparameter tuning job.

          *

          * The default value is false. In this case, Amazon Forecast uses default hyperparameter values * from the chosen algorithm. *

          *

          * To override the default values, set PerformHPO to true and, optionally, supply * the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which * hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, * you are required to specify an algorithm and PerformAutoML must be false. *

          *

          * The following algorithm supports HPO: *

          *
            *
          • *

            * DeepAR+ *

            *
          • */ public Boolean getPerformHPO() { return this.performHPO; } /** *

            * Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training * data. The process of performing HPO is known as running a hyperparameter tuning job. *

            *

            * The default value is false. In this case, Amazon Forecast uses default hyperparameter values from * the chosen algorithm. *

            *

            * To override the default values, set PerformHPO to true and, optionally, supply the * HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters * participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to * specify an algorithm and PerformAutoML must be false. *

            *

            * The following algorithm supports HPO: *

            *
              *
            • *

              * DeepAR+ *

              *
            • *
            * * @param performHPO * Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your * training data. The process of performing HPO is known as running a hyperparameter tuning job.

            *

            * The default value is false. In this case, Amazon Forecast uses default hyperparameter values * from the chosen algorithm. *

            *

            * To override the default values, set PerformHPO to true and, optionally, supply * the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which * hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, * you are required to specify an algorithm and PerformAutoML must be false. *

            *

            * The following algorithm supports HPO: *

            *
              *
            • *

              * DeepAR+ *

              *
            • * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withPerformHPO(Boolean performHPO) { setPerformHPO(performHPO); return this; } /** *

              * Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training * data. The process of performing HPO is known as running a hyperparameter tuning job. *

              *

              * The default value is false. In this case, Amazon Forecast uses default hyperparameter values from * the chosen algorithm. *

              *

              * To override the default values, set PerformHPO to true and, optionally, supply the * HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters * participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to * specify an algorithm and PerformAutoML must be false. *

              *

              * The following algorithm supports HPO: *

              *
                *
              • *

                * DeepAR+ *

                *
              • *
              * * @return Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your * training data. The process of performing HPO is known as running a hyperparameter tuning job.

              *

              * The default value is false. In this case, Amazon Forecast uses default hyperparameter values * from the chosen algorithm. *

              *

              * To override the default values, set PerformHPO to true and, optionally, supply * the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which * hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, * you are required to specify an algorithm and PerformAutoML must be false. *

              *

              * The following algorithm supports HPO: *

              *
                *
              • *

                * DeepAR+ *

                *
              • */ public Boolean isPerformHPO() { return this.performHPO; } /** *

                * The hyperparameters to override for model training. The hyperparameters that you can override are listed in the * individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes. *

                * * @return The hyperparameters to override for model training. The hyperparameters that you can override are listed * in the individual algorithms. For the list of supported algorithms, see * aws-forecast-choosing-recipes. */ public java.util.Map getTrainingParameters() { return trainingParameters; } /** *

                * The hyperparameters to override for model training. The hyperparameters that you can override are listed in the * individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes. *

                * * @param trainingParameters * The hyperparameters to override for model training. The hyperparameters that you can override are listed * in the individual algorithms. For the list of supported algorithms, see * aws-forecast-choosing-recipes. */ public void setTrainingParameters(java.util.Map trainingParameters) { this.trainingParameters = trainingParameters; } /** *

                * The hyperparameters to override for model training. The hyperparameters that you can override are listed in the * individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes. *

                * * @param trainingParameters * The hyperparameters to override for model training. The hyperparameters that you can override are listed * in the individual algorithms. For the list of supported algorithms, see * aws-forecast-choosing-recipes. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withTrainingParameters(java.util.Map trainingParameters) { setTrainingParameters(trainingParameters); return this; } public CreatePredictorRequest addTrainingParametersEntry(String key, String value) { if (null == this.trainingParameters) { this.trainingParameters = new java.util.HashMap(); } if (this.trainingParameters.containsKey(key)) throw new IllegalArgumentException("Duplicated keys (" + key.toString() + ") are provided."); this.trainingParameters.put(key, value); return this; } /** * Removes all the entries added into TrainingParameters. * * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest clearTrainingParametersEntries() { this.trainingParameters = null; return this; } /** *

                * Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

                * * @param evaluationParameters * Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how * to perform the split and the number of iterations. */ public void setEvaluationParameters(EvaluationParameters evaluationParameters) { this.evaluationParameters = evaluationParameters; } /** *

                * Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

                * * @return Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates * a predictor by splitting a dataset into training data and testing data. The evaluation parameters define * how to perform the split and the number of iterations. */ public EvaluationParameters getEvaluationParameters() { return this.evaluationParameters; } /** *

                * Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to * perform the split and the number of iterations. *

                * * @param evaluationParameters * Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a * predictor by splitting a dataset into training data and testing data. The evaluation parameters define how * to perform the split and the number of iterations. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withEvaluationParameters(EvaluationParameters evaluationParameters) { setEvaluationParameters(evaluationParameters); return this; } /** *

                * Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast * uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization * (HPO). For more information, see aws-forecast-choosing-recipes. *

                *

                * If you included the HPOConfig object, you must set PerformHPO to true. *

                * * @param hPOConfig * Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon * Forecast uses default values. The individual algorithms specify which hyperparameters support * hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes.

                *

                * If you included the HPOConfig object, you must set PerformHPO to true. */ public void setHPOConfig(HyperParameterTuningJobConfig hPOConfig) { this.hPOConfig = hPOConfig; } /** *

                * Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast * uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization * (HPO). For more information, see aws-forecast-choosing-recipes. *

                *

                * If you included the HPOConfig object, you must set PerformHPO to true. *

                * * @return Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon * Forecast uses default values. The individual algorithms specify which hyperparameters support * hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes.

                *

                * If you included the HPOConfig object, you must set PerformHPO to true. */ public HyperParameterTuningJobConfig getHPOConfig() { return this.hPOConfig; } /** *

                * Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast * uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization * (HPO). For more information, see aws-forecast-choosing-recipes. *

                *

                * If you included the HPOConfig object, you must set PerformHPO to true. *

                * * @param hPOConfig * Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon * Forecast uses default values. The individual algorithms specify which hyperparameters support * hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes.

                *

                * If you included the HPOConfig object, you must set PerformHPO to true. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withHPOConfig(HyperParameterTuningJobConfig hPOConfig) { setHPOConfig(hPOConfig); return this; } /** *

                * Describes the dataset group that contains the data to use to train the predictor. *

                * * @param inputDataConfig * Describes the dataset group that contains the data to use to train the predictor. */ public void setInputDataConfig(InputDataConfig inputDataConfig) { this.inputDataConfig = inputDataConfig; } /** *

                * Describes the dataset group that contains the data to use to train the predictor. *

                * * @return Describes the dataset group that contains the data to use to train the predictor. */ public InputDataConfig getInputDataConfig() { return this.inputDataConfig; } /** *

                * Describes the dataset group that contains the data to use to train the predictor. *

                * * @param inputDataConfig * Describes the dataset group that contains the data to use to train the predictor. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withInputDataConfig(InputDataConfig inputDataConfig) { setInputDataConfig(inputDataConfig); return this; } /** *

                * The featurization configuration. *

                * * @param featurizationConfig * The featurization configuration. */ public void setFeaturizationConfig(FeaturizationConfig featurizationConfig) { this.featurizationConfig = featurizationConfig; } /** *

                * The featurization configuration. *

                * * @return The featurization configuration. */ public FeaturizationConfig getFeaturizationConfig() { return this.featurizationConfig; } /** *

                * The featurization configuration. *

                * * @param featurizationConfig * The featurization configuration. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withFeaturizationConfig(FeaturizationConfig featurizationConfig) { setFeaturizationConfig(featurizationConfig); return this; } /** *

                * An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

                * * @param encryptionConfig * An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. */ public void setEncryptionConfig(EncryptionConfig encryptionConfig) { this.encryptionConfig = encryptionConfig; } /** *

                * An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

                * * @return An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. */ public EncryptionConfig getEncryptionConfig() { return this.encryptionConfig; } /** *

                * An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. *

                * * @param encryptionConfig * An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon * Forecast can assume to access the key. * @return Returns a reference to this object so that method calls can be chained together. */ public CreatePredictorRequest withEncryptionConfig(EncryptionConfig encryptionConfig) { setEncryptionConfig(encryptionConfig); return this; } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. * * @return A string representation of this object. * * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("{"); if (getPredictorName() != null) sb.append("PredictorName: ").append(getPredictorName()).append(","); if (getAlgorithmArn() != null) sb.append("AlgorithmArn: ").append(getAlgorithmArn()).append(","); if (getForecastHorizon() != null) sb.append("ForecastHorizon: ").append(getForecastHorizon()).append(","); if (getPerformAutoML() != null) sb.append("PerformAutoML: ").append(getPerformAutoML()).append(","); if (getPerformHPO() != null) sb.append("PerformHPO: ").append(getPerformHPO()).append(","); if (getTrainingParameters() != null) sb.append("TrainingParameters: ").append(getTrainingParameters()).append(","); if (getEvaluationParameters() != null) sb.append("EvaluationParameters: ").append(getEvaluationParameters()).append(","); if (getHPOConfig() != null) sb.append("HPOConfig: ").append(getHPOConfig()).append(","); if (getInputDataConfig() != null) sb.append("InputDataConfig: ").append(getInputDataConfig()).append(","); if (getFeaturizationConfig() != null) sb.append("FeaturizationConfig: ").append(getFeaturizationConfig()).append(","); if (getEncryptionConfig() != null) sb.append("EncryptionConfig: ").append(getEncryptionConfig()); sb.append("}"); return sb.toString(); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (obj instanceof CreatePredictorRequest == false) return false; CreatePredictorRequest other = (CreatePredictorRequest) obj; if (other.getPredictorName() == null ^ this.getPredictorName() == null) return false; if (other.getPredictorName() != null && other.getPredictorName().equals(this.getPredictorName()) == false) return false; if (other.getAlgorithmArn() == null ^ this.getAlgorithmArn() == null) return false; if (other.getAlgorithmArn() != null && other.getAlgorithmArn().equals(this.getAlgorithmArn()) == false) return false; if (other.getForecastHorizon() == null ^ this.getForecastHorizon() == null) return false; if (other.getForecastHorizon() != null && other.getForecastHorizon().equals(this.getForecastHorizon()) == false) return false; if (other.getPerformAutoML() == null ^ this.getPerformAutoML() == null) return false; if (other.getPerformAutoML() != null && other.getPerformAutoML().equals(this.getPerformAutoML()) == false) return false; if (other.getPerformHPO() == null ^ this.getPerformHPO() == null) return false; if (other.getPerformHPO() != null && other.getPerformHPO().equals(this.getPerformHPO()) == false) return false; if (other.getTrainingParameters() == null ^ this.getTrainingParameters() == null) return false; if (other.getTrainingParameters() != null && other.getTrainingParameters().equals(this.getTrainingParameters()) == false) return false; if (other.getEvaluationParameters() == null ^ this.getEvaluationParameters() == null) return false; if (other.getEvaluationParameters() != null && other.getEvaluationParameters().equals(this.getEvaluationParameters()) == false) return false; if (other.getHPOConfig() == null ^ this.getHPOConfig() == null) return false; if (other.getHPOConfig() != null && other.getHPOConfig().equals(this.getHPOConfig()) == false) return false; if (other.getInputDataConfig() == null ^ this.getInputDataConfig() == null) return false; if (other.getInputDataConfig() != null && other.getInputDataConfig().equals(this.getInputDataConfig()) == false) return false; if (other.getFeaturizationConfig() == null ^ this.getFeaturizationConfig() == null) return false; if (other.getFeaturizationConfig() != null && other.getFeaturizationConfig().equals(this.getFeaturizationConfig()) == false) return false; if (other.getEncryptionConfig() == null ^ this.getEncryptionConfig() == null) return false; if (other.getEncryptionConfig() != null && other.getEncryptionConfig().equals(this.getEncryptionConfig()) == false) return false; return true; } @Override public int hashCode() { final int prime = 31; int hashCode = 1; hashCode = prime * hashCode + ((getPredictorName() == null) ? 0 : getPredictorName().hashCode()); hashCode = prime * hashCode + ((getAlgorithmArn() == null) ? 0 : getAlgorithmArn().hashCode()); hashCode = prime * hashCode + ((getForecastHorizon() == null) ? 0 : getForecastHorizon().hashCode()); hashCode = prime * hashCode + ((getPerformAutoML() == null) ? 0 : getPerformAutoML().hashCode()); hashCode = prime * hashCode + ((getPerformHPO() == null) ? 0 : getPerformHPO().hashCode()); hashCode = prime * hashCode + ((getTrainingParameters() == null) ? 0 : getTrainingParameters().hashCode()); hashCode = prime * hashCode + ((getEvaluationParameters() == null) ? 0 : getEvaluationParameters().hashCode()); hashCode = prime * hashCode + ((getHPOConfig() == null) ? 0 : getHPOConfig().hashCode()); hashCode = prime * hashCode + ((getInputDataConfig() == null) ? 0 : getInputDataConfig().hashCode()); hashCode = prime * hashCode + ((getFeaturizationConfig() == null) ? 0 : getFeaturizationConfig().hashCode()); hashCode = prime * hashCode + ((getEncryptionConfig() == null) ? 0 : getEncryptionConfig().hashCode()); return hashCode; } @Override public CreatePredictorRequest clone() { return (CreatePredictorRequest) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy